Chapter 1 Summary

GEOMETRY FOR PHYSICS: ΔΧΥΖ.

DRAW "EXTRA LINES": extensions of existing lines, parallel to existing lines, perpendicular to existing lines, or to form right-triangles.

TOTAL = SUM OF PARTS: If
$$\leftarrow x \rightarrow \leftarrow 3 \rightarrow$$
, then $x = 4$.

SIMILAR TRIANGLES: If two triangles have the same angles (and thus the same shape), they have the same side/side ratios.

VECTORS have both magnitude and direction.

If you know 1 of $[\theta, \sin \theta, \cos \theta, \tan \theta]$, you can find the others. Calculator: $\theta - (\cos + \Delta DJ/HYP)$ ratio, and ADJ/HYP ratio $-(\cos - \cos + \Delta DJ/HYP)$ ratio.

$$\cos \theta \longrightarrow \sin \theta$$

$$\cos \theta = \sin(90^{\circ} - \theta)$$
, and $\sin \theta = \cos(90^{\circ} - \theta)$

If you know 2 of the 4 right-triangle variables [ADJ, OPP, HYP, $\theta/\sin\theta/\cos\theta/\tan\theta$] you can find the other 2, by solving the equations that contain the knowns.

To add vectors, A) Draw the vectors head-to-tail, like a "relay race",

- B) choose axes and split each vector into x & y components,
- C) add x-components to get x_{total} , add y-components to get y_{total} ,
- D) use these x & y components to "reconstruct" the resultant vector.

There is a difference between *components* (which are always \perp) and *originals*. OPTIONAL: Vector multiplication (dot product & cross product) is explained in Sections 18.51-18.53.

Chapter 2 Summary

the tyvax system

5 variables, 5 equations (each is missing 1 variable)

$v_f - v_i$	=	a t	Δχ	is missing
$(x_f - x_i)$	=	$\frac{1}{2}(v_i + v_f) t$	а	is missing
$(x_f - x_i)$	=	v _i t + ½ a t ²	Vf	is missing
$(x_f - x_i)$	=	$v_f t - \frac{1}{2}a t^2$	Vį	is missing
_{Vi} 2 - _{Vi} 2	=	2a (x _f - x _i)	Δt	is missing

These equations are true only if a is constant between i & f.

- Step 1: Read carefully [for words, sentence structure, implications], think [creative and logical], draw [form a clear picture-idea, on paper and/or mentally].

 Choose initial (i) and final (f) points for a useful constant-a interval.
- Step 2: Make a "tvvax table", to show what you know about the 5 tvvax variables. Look for zero-v words: from rest, stop, is dropped, peak, maximum height,... "t" means Δt . You can substitute " $x_f x_i$ " for Δx whenever it's helpful. Δx depends only on x_i and x_f positions, not on what happens between i & f.
- Step 3: Look for a 3-of-5 subgoal: if you know any 3 variables, you can find the other 2. If you can't get 3-of-5, re-read the problem-statement more carefully, look for "links" where the same variable occurs in two tvvax tables [like New Year's Eve {Section 2.6}, semi-known symbols {2.7}, x-time = y-time {2.8},...].
- Step 4: <u>Use "1-out strategy" to choose the equation</u> with 3 knowns & the goal-variable, substitute-and-solve. If necessary, use simultaneous equations {2.7}, or a quadratic option {19.7} like the Q-formula {2.6} or 2-step Q-Detour {2.6} or √ Q-trick {2.7}; for each Q-option you must choose between + and − solutions. UNITS: Use SI (s, m/s, m/s², m). Be careful at start (during substitution), relaxed in middle (algebra solution), careful at end (answering the question).

Step 5: Answer the question that was asked.

FREE FLIGHT $\{2.5\}$: If only gravity affects an object and air resistance is ignored, it has $a_x = 0$; $a_y = 9.80$ m/s per second downward, which is -9.80 m/s² if "up" is +. Don't mix a free flight interval with a "throw" or "impact".

SPLITS: Make a tyvax table for each time interval and/or object and/or direction.

<u>TIME SPLIT {2.6}</u>: Split the action into useful constant-a intervals, separated by special points. Be specific about v-labels; use v_1 , v_2 , v_3 ,... (not v_i & v_f), look for New Year's Eve links. Use "total = sum-of-parts" logic, like $\Delta t_{1-t_0-2} + \Delta t_{2-t_0-4} = \Delta t_{1-t_0-4}$.

OBJECT SPLIT $\{2.7\}$: Translate the words of a problem into a clear picture that helps you define twvax knowns and unknowns and semi-knowns (where the same variable-letter is in different twvax tables). Use " $\Delta x = x_f - x_i$ " for each object; at a certain special time (like a passing point) two objects may have the same x-position.

<u>DIRECTION SPLIT {2.8 & 2.9}</u>: Analyze x & y motion independently, make separate x & y tvvax tables for each time interval and object. For free-flight motion,

Use Section 1.3 methods to split vi into vx & vy, and reconstruct the (vtotal)f vector.

SYMMETRY: For free-fall motion when $y_i = y_f$, $\Delta t_{before\ peak} = \Delta t_{after\ peak}$, $\Delta x_{before\ peak} = \Delta x_{after\ peak}$, $\Delta x_{i-to-f} = v_i^2 (\sin 2\theta_i)/g$, and $(v_y)_i = -(v_y)_f$.

RELEASE PRINCIPLE: vjust-before-release = vjust-after-release (magnitude & direction).

A vector's x (or y) component is + if the vector points in the x (or y) direction you've chosen to be +. The x-component is - if it points in the opposite direction.

 $\Delta x = v_{average} \Delta t$, so Δx and $v_{average}$ always point in the same direction.

 $\Delta v = a_{average} \Delta t$, so Δv and $a_{average}$ always point in the same direction.

v and a can have different directions; examples occur in Sections 2.2 & 2.10-Shapes.

While number-line v is increasing, a is +; while number-line v is decreasing, a is -. While speed \uparrow , v & a have the same \pm sign; while speed \downarrow , v & a have opposite \pm signs.

MOTION GRAPHS {2.0}: Point, Slope, Shape (Concavity), Area.

Average Slope: Use actual graph-points for i+f, calculate RISE/RUN. Instantaneous Slope: draw tangent line, choose i+f, calculate RISE/RUN.

RELATIVE MOTION (2.11)

 V_{ground}^{train} { v of tr, obs from gr} + V_{train}^{runner} { v of ru, obs from tr} = V_{ground}^{runner} { v of ru, obs from gr} V_{ground}^{train} = $-V_{train}^{ground}$, vectors can be added in any order: V_{ground}^{train} + V_{train}^{runner} = V_{ground}^{runner} + V_{ground}^{runner} +

Here is a TOOL SUMMARY for 2-dimensional "boat & plane problems":

Chapter 3 Summary

An F-diagram (and its corresponding F=ma) always refer to one specific object; draw a "free body" F-diagram, or use separating-lines (as in Problem 3-B), or colors.

You can define a combination of matched-motion objects as a "system-object" (or just add the F=ma's of individual objects) to make *internal forces* cancel. This canceling can be good (if F_{int} is unknown) or bad (if F_{int} is known).

X & Y motion is independent, so choose axes, split F's (and a) into x & y components.

For each F-component, decide whether direction should be represented by a + or - sign.

F-letters represent only magnitude: -mg = -m(9.80), not -m(-9.80).

 $F_x = max$

and

 $F_y = m a_y$

Force NAME	cause	FORCE MAGNITUDE	FORCE DIRECTION		
GRAVITY: weight, w	pull of earth	$mg \approx m(9.80)$ {GMm/r ² ; see Chptr 5G}	PULL, "down" toward center of earth		
TENSION, T or F _t	string, rape,	There is no magnitude formula for T or N.	PULL, in direction the rope points.		
NORMAL, NorFnor	surface contact	(find Tor N magnitude by solving F=ma)	PUSH, I to surfaces' plane-of-contact		
FRICTION / fx	surface contact	$f_R = \mu_R N$, $f_S \le \mu_S N$ (f_S can vary from 0 to $\mu_S N$) f_S is EQUAL-AND-OPPO	fx opposes sliding motion fs opposes "would-be" motion SITE to Fnon-friction		
SPRING	coiled spring	MAGNITUDE & DIRECTION is -K(Xf-Xe), or (if x = 0), -KX	like "homing pigeon", PUSH or PULL Toward Xe		
OTHER FORCES include air resistance, fluid pressure and buoyancy (in Ch.6), electrostatic (Ch.11), magnetic (Ch.13), and nuclear (Ch.15).					

A third law force-pair involves two EQUAL-AND-OPPOSITE relationships:

- 1) Third law forces are EQUAL IN SIZE and OPPOSITE IN DIRECTION, and also
- 2) EQUAL IN "KIND OF FORCE" and OPPOSITE IN "MUTUAL SYMMETRY" (for example, "If ground pushes block, then block also pushes ground.").

Partners in a third law force-pair don't act on the same object, so they never appear together on the F-diagram for an object. (For example, equal-and-opposite N & mg forces are not a third law pair.)

LINKS: • third law (mutual-interaction F-partners appear in F=ma for two objects)

- massless rope (pulls object at both ends with equal T, so T is in 2 F=ma's)
- a-link ("a" appears in tvvax and F=ma; link works in both directions)
- matched motion (if two objects have the same "a")
- split-link (if an F is split into $F_x \& F_v$, that F is in $F_x=ma_x \& F_y=ma_v$), N-link (if one F=ma has N, and another F=ma has "friction = μ N")

If possible, choose object & axes to get a 1-unknown equation. Some axes-options are:

This flowchart organizes the fundamentals of friction into a useful strategy:

coefficients of friction are μ_k & μ_s , but friction forces are f_k & f_s (or $\mu_k N$ & $\mu_s N$). μ_k & μ_s are approximately independent of surface-contact area and sliding speed. There are many interesting friction problems in Section 3.91.

Chapter 4A Summary

There are two TWE formats: the one shown below, and the one derived in Section 4.3.

Wother can be a rope pull, person's push or pull, car engine or brakes (thru tire-friction),...

Eliminate the TWE parts you don't need, then choose i & f, h=0 & x=0. Substitute for W_{fr} , cancel m's if every term contains m, remember v2 & x2.

For straight-line motion with constant i-to-f force,

 $W = F_{parallel} d$ $W = F d \cos \emptyset$

Work = 0 if $\underline{F} = 0$, or $\underline{d} = 0$ (no movement), or $\cos \emptyset = 0$ (F & d are \bot).

 $P = \frac{W}{\Delta t} = Fv \cos \emptyset$ $\frac{(F/d)\cos \emptyset}{(\Delta t)}$

two different ways to group Fd cosp / Dt

If ⊗ (not in equilibrium) is released with v_i = 0, it responds so its PE ↓;
Fparallel & d are in same direction, so W is + and KE ↑ (as PE ↓).
If v_i ≠ 0, object can move "uphill" in PE; W is - so KE ↓ as PE ↑.

If Fpar & d point same direction, W is +. If Fpar & d point opposite directions, W is -.

Totals & Partials: $F_{total} = ma$ & $W_{total} = \Delta(\frac{1}{2} mv^2)$, but $F_{part} \neq ma$ & $W_{part} \neq \Delta(\frac{1}{2} mv^2)$. $F_{total} = F_A + F_B + ...$, $W_{total} = W_A + W_B + ...$, $P_{total} = P_A + P_B + ...$

F causes $m(\Delta v / \Delta t)$,

F Δx causes $\Delta(\frac{1}{2}mv^2)$,

 $F \Delta t$ causes $\Delta(mv)$.

Chapter 4B Summary

You can define any combination of objects as a "system".

 $F_{internal}$ doesn't cause $\Delta(mv)$, because the F_{int} Δt acting on one part of a system is canceled by an equal-and-opposite F_{int} Δt (from a "third law mutual-force" partner) that acts on another part of the system; this cancellation makes (F_{int} Δt)_{total} = 0.

$$\mathbf{F}_{\text{external}} \Delta \mathbf{t} = (\mathbf{m}\mathbf{v})_{\text{f}} - (\mathbf{m}\mathbf{v})_{\text{i}}$$

You can ignore all internal forces; the equation only asks for Fexternal!

For each force, ask "Is this F caused by another system-object (making it $F_{internal}$) or by something outside the system (which makes it $F_{external}$)?"

Some external forces are gravity, air resistance, and external friction or T or N. Some internal forces are internal friction or T or N, a throw or gunshot of a system-object by another system-object, an internal spring-force or internal explosion.

COLLISION INTERNAL FRICTION THROW SPRING INTERNAL EXPLOSION

CONSERVATION OF MOMENTUM: If $F_{ext}=0$, mv is conserved, and $(mv)_i=(mv)_f$. MOMENTUM IS "ALMOST CONSERVED, $(mv)_i\approx (mv)_f$, if $\Delta t\approx 0$ causes $F_{ext} \Delta t\approx 0$.

KE retention in a **collision**: If it is 100%, **elastic**. If it is less than 100%, **inelastic**. When the objects "stick", it is the minimum % (not necessarily 0), **totally inelastic**.

For a 1-dimensional elastic collision of objects 1 & 2, you can use these formulas:

$$(v_1)_f = \frac{m_1 - m_2}{m_1 + m_2} (v_1)_i + \frac{2 m_2}{m_1 + m_2} (v_2)_i$$

$$(v_2)_f = \frac{m_2 - m_1}{m_1 + m_2} (v_2)_i + \frac{2 m_1}{m_1 + m_2} (v_1)_i$$

- XY independence ⇒ [x & y equations on left & right sides of page]; don't mix x & y!
- If $F_{ext} = 0$, $(mv)_i = (mv)_f$ [i & f on left & right sides of equation]; don't mix i & f!
- Check to be sure you have an mv term for each system-object at the i & f times.

The center-of-mass for a symmetric uniform-density object is at its center. $x_{cm} = \frac{m_1 x_1 + m_2 x_2 + ...}{m_1 + m_2 + ...}$

If a system has $(v_{cm})_i = 0$ and $F_{ext} = 0$, its c-of-m doesn't move, and $(x_{cm})_i = (x_{cm})_f$. Optional: system-adaptions of some (but not all) motion equations is discussed in Section 4.11.

How to Choose a Useful Equation

two tvvax F = ma $F \Delta x = \Delta(\frac{1}{2} m v^2)$ equations "a link" $F \Delta t = \Delta(mv)$

Choose an equation with the goal-variable and lots of "knowns".

For an interval with no F, use one of the 5 tvvax equations (which don't contain F). F=ma has no i or f or Δ ; F=ma shows what is happening at a specific instant of time. If the accelerating effects of F_{total} accumulate during an interval, use F Δ x= Δ KE if Δ x is either given or asked for, and use F Δ t= Δ p if Δ t is given or asked for.

If an object changes height between i & f, use "mg Δ h" in W= Δ KE. If "internal force" is involved, simplify things by using $F_{ext} \Delta t = \Delta p$.

Chapter 5 Summary

The <u>centripetal (radial) axis</u> points toward the circle's center, along a radius-line. The <u>tangential axis</u> points along the direction of motion (straight out the "front windshield" or "rear window").

At any instant of time, the centripetal and tangential axisdirections are perpendicular (\perp) to teach other.

A car's speedometer shows v (for straight-line motion) or v_T (if motion is along a curve). Δs is the distance an object actually travels (see picture above).

Centripetal (Radial) Acceleration: At any instant of time, whether v_T is constant or changing, a_c is \bot to v_T and points toward the circle-center, with magnitude v_T^2/r . Cause \to Effect: A force "F_c" causes "m" to move in a circle with acceleration "a_c",

$$F_c = m \frac{V_T^2}{r}$$
 — (by substituting " $V_T = r\omega$ " from 5C) \longrightarrow $F_c = m r \omega^2$

 F_c toward center is +, F_c away from center is -; the F_τ component doesn't cause a_c . "Centripetal" is a direction (like "x" or "y"), not the name for a new kind of force. F_c is caused by real objects; "circular motion" or "acceleration" don't cause force.

$$\begin{split} &\mathbf{F_{gravity}} = \mathbf{GMm/r^2}, \text{ center-to-center attraction; } G = 6.67 \times 10^{-11} \text{ (in SI units)}. \\ &\text{Near the earth's surface, } \mathbf{F_{gravity}} = \mathbf{mg}, \text{ straight down toward earth's center; } \mathbf{g} \approx \mathbf{GM_{earth}} \, \mathbf{m/r^2} \,. \\ &\mathbf{F_{gravity}} \text{ extends into "space"; it can cause one object to } \textit{orbit} \text{ around another object,} \end{split}$$

$$\frac{GMm}{r^2} = m \frac{v_r^2}{r}$$

$$\frac{GM}{4\pi^2} T^2 = r^3$$

$$GM = r^3 \omega^2$$

Angular-Motion Definitions, and Connecting Equations

$$\frac{\Delta s}{\Delta t} = V_{\tau} \qquad V_{\tau} = r \omega \qquad \omega = \frac{\Delta \theta}{\Delta t}$$

$$\frac{\Delta V_{\tau}}{\Delta t} = \alpha_{\tau} \qquad \alpha_{\tau} = r \omega \qquad \omega = \frac{\Delta \omega}{\Delta t}$$

Angular Velocity Units

If you know 1 of 4 $(\omega, f, \underline{rpm}, \underline{T})$ you can find the others: $2\pi \text{ rads} = 1 \text{ rev} = 360^{\circ}$, 60 seconds = 1 minute, $\omega = 2\pi f$; 1/f = T, f = 1/T.

If you know 1 of 3 $(\underline{v}_T, \underline{r}, \underline{\omega}/\underline{f}/\underline{r}\underline{p}\underline{m}/\underline{T})$ you can find the others:

$$v_{T} = r \omega$$

$$v_{T} = 2\pi r/T$$

FOUR KINDS OF ACCELERATION

		O LINEAR	Q+ TANGENTIAL	≪ ANGULAR	Oc (or OR) CENTRIPETAL	
ONS	LINEAR MOTION	Q is "REGULAR" ACCELERATION (as in Chapters 24)		not used	0	
SITUATI	CONSTANT-SPEED CIRCULAR MOTION	not used	0	0	ac shows the rate-of-change	
	CHANGING-SPEED CIRCULAR MOTION	not used		∝ shows w's rate-of-change	of V-direction as object moves along a curve.	
	F= ma EQUATION	Fx = max Fy = may	F _r = m a _r	Υ=Ι∝	Fc = mac	
	MAGNITUDE	<u>Δ۷</u> Δ†	$\frac{\Delta V_{\tau}}{\Delta t}$ $Q_{\tau} =$	<u>∆+</u> ∆2	V ₁ ² /r and rw ²	
	DIRECTION	If speed 1, out	"front window". "rear window". "n of motion.}	± sign as at.	toward center of circle (on radial-line)	
	What is changing?	Magnitude of V	Magn. of Vr	Magn. of w	Direction of Y vector	

There is one kind of non-angular acceleration: $\mathbf{a}\text{-vector} \equiv \Delta(\mathbf{v}\text{-vector})/\Delta t$. \mathbf{a} , \mathbf{a}_c & \mathbf{a}_T are just convenient categories that describe the $\Delta \mathbf{v}/\Delta t$ for three common situations. To get the circular-motion \mathbf{a}_{total} vector, add \mathbf{a}_c and \mathbf{a}_T (which are always \perp) as vectors

COMBINED MOTION: TRANSLATION + ROTATION

* These ='s are true only if the object (or rope) moves across the floor (or pulley) without slipping.

All points on a spinning plate have the same ω ; but if two points have different r's, they will (because $v_T = r\omega$) have different v_T 's.

KINETIC ENERGY (translational & rotational)

If object is at same point after 1 rev (like rock-on-string), it has one kind of KE; this can be calculated as $\frac{1}{2}mv^2$ or $\frac{1}{2}I\omega^2$. If object has moved after 1 rev (like a rolling sphere), it has KE_{trans} & KE_{rotn}, and if rolling is non-slip so $v_T = r\omega$, KE_{total} = $\frac{1}{2}mv^2 + \frac{1}{2}I\omega^2 = \frac{1}{2}mv^2 + X(\frac{1}{2}mv^2)$.

Linear, Tangential & Angular Variables, and CONNECTING EQUATIONS

LINEAR	+	Δ×	V	۵.	F	m
TANGENTIAL	+	Δs	۷т	QT	F⊤	m
ANGULAR	†	94	w	×	4	I
CONNECTING EQUATIONS	_	DS=100	V _T = rw	0,= r ×	F ₇ = 7	$M = \frac{L_2}{T}$

Linear, Tangential and Angular Equations

Linear equations (like F=ma) have "tangential analogies" ($F_T=m\,a_T$). If connecting equation substitutions are made for each tangential variable ($F_T=\tau/r$, $m=I/r^2$, $a_T=r\,\alpha$), every "r" will cancel, as shown in Parts 1, 3 & 4 of Chapter 5F. The overall result is that linear variables change to tangential and then angular, even though (as discussed in 5D Part 4) tangential & angular variables are not equal.

tvvax strategies (as in Section 2.21 or Chapter 2's Summary) can be used for $t\omega\omega\alpha\theta$: read/think/draw, choose i & f points for a constant- α interval, make a $t\omega\omega\alpha\theta$ table, look for 3-of-5, choose a 1-out equation, substitute and solve, answer the question.

UNITS: For $t\omega\omega\alpha\theta$, just be consistent; use all rads-and-s, or all revs-and-s, or ... For other rotational-motion equations, use only radians for $\Delta\theta$, ω and α .

I: MOMENT OF INERTIA calculation

For a system of several objects, $I_{total} = sum$ of I's for the individual objects. $I = mr^2$ for a point-object, $I = Xmr^2$ for a large object (get X-value from a table). Optional: parallel-axis ($I = I_{cm} + mh^2$) & radius of gyration ($I = mr_g^2$), Problems 5-## & 5-##.

How to calculate TORQUE, T

- 1) Choose object, draw F-diagram with each F acting at F-point (where F is applied).
- 2) Choose a specific τ -axis (τ is always calculated "with respect to" a specific axis).
- 3) Use either of the τ -formulas shown below. (I recommend that you learn both formulas.)

 $\tau = \pm r F \sin \theta$

 $\tau = \pm r_{\perp} F$

r is a vector from τ -axis to F-point θ is angle between r and F

To find r_{\perp} , a) DRAW the F-extensions, b) find closest approach to τ -axis (at 90°); c) this extension-to-axis distance is r_{\perp} .

- 4) To find direction-sign of τ , a) POINT pen in r-direction, b) HOLD pen at τ-axis,
 c) PUSH/PULL pen with F at F-point, d) DECIDE (usually is defined to be +).
- 5) $\tau_{\text{total}} = \text{sum of individual } \tau$'s.

ANGULAR MOMENTUM (L) is calculated almost like τ ; just substitute mv for F. r is vector from object-location to L-axis, \mathbf{r}_{\perp} is shortest shortest distance from v-extension to L-axis. Linear motion: $\mathbf{L} = \mathbf{m} \mathbf{v} \mathbf{r}_{\perp}$. Rock-on-string: $\mathbf{m} \mathbf{v} \mathbf{r}_{\perp}$ or $\mathbf{I} \boldsymbol{\omega}$. "I = Xmr²" object: $\mathbf{L} = \mathbf{I} \boldsymbol{\omega}$.

Separate τ into τ_{int} and τ_{ext} ; ask "Is the τ -causer inside or outside the system?". Some examples of τ_{int} are "analogies to $F_{internal}$ ", and an ice skater's arm-extension.

CONSERVATION OF ANGULAR MOMENTUM: If $\tau_{external} = 0$, $L_i = L_f$. ALMOST-CONSERVATION: If $\Delta t \approx 0$ causes $\tau_{external} \Delta t \approx 0$, $L_i \approx L_f$.

TORQUE-EQUILIBRIUM PROBLEMS

If an object is "static" (remaining at rest), it has $F_x=0$ and $F_y=0$ and $\tau=0$. For $\tau=0$, choose τ -axis anywhere. { If an F-extension goes through a τ -axis (so $r_\perp=0$), this F disappears from " $\tau=0$ " for that axis. Try to get a 1-unknown equation, or 2-unknowns/2-equations.} Each F causes a τ ; there are 4 τ -decisions for $\tau=\pm F$ $r\sin\theta$, 3 for $\tau=\pm F$ r_\perp .

Chapter 8 Summary

This summary is explained in Section 8.3.

constant-variables: TE A k, m
$$v_{max}$$
, ω , f, T \emptyset changing-variables: PE, KE x F, a v t θ

$$x_{max} = -A$$
 $x = 0$ $x_{max} = +A$ $F_{max} = -k(-A)$ $F = 0$ $F_{max} = -k(+A)$ $x_{max} = -k(+A)$ $x_{$

 $\pm \omega A$ $v_{max} =$

= 0

10.8 A Summary of Electrostatic Relationships

The magnitude formulas marked with • are correct only for point-charges or spherically symmetric charge distributions.

All other formulas and relationships are always true.

The SI value of "k" is $9.00 \times 10^9 \text{ Nm}^2/\text{s}^2$. k can also be written as " $1/4\pi \in 0$ ", where $\epsilon_0 = 8.85 \times 10^{-12} \text{ s}^2/\text{Nm}^2$.

In the left-side formulas:

F and W are caused by the mutual interaction between Q & q, so Q & q both appear in their formulas.

In the right-side formulas: $E_Q \& V_Q$ (the E-field and voltage caused by Q) don't depend on q, so neither has q in its formula.

Here are some differences between the top-row and bottom-row formulas. Top formulas (F and E) have 1/r, are vectors (with magnitude and direction). Bottom formulas (W and V) have $1/r^2$, are non-vectors (with magnitude and \pm sign).

For F and E, ignore the \pm sign of Q & q; use visual logic and think "vector direction". For W and V, substitute the \pm sign of Q & q, then be careful as you solve the algebra.

Optional Section 18.# discusses the calculus relationships between F & W and between E & V: $\Delta V = \int E dr$, $E_x = dV/dx$, etc.

The PRINCIPLE OF SUPERPOSITION:

the F, E, W & V caused by one charge is independent of that caused by other charges, so F_{total}, E_{total},... is the sum of the F's, E's,... caused by all charges in a system.

 $\mathbf{F}_{total} = \text{sum of } \mathbf{F}$'s $\mathbf{E}_{total} = \text{sum of } \mathbf{E}$'s $\mathbf{W}_{total} = \text{sum of } \mathbf{W}$'s $(\Delta V)_{total} = \text{sum of } (\Delta V)$'s

To find total F or E, split-add-reconstruct vectors; for total W or V, use + and - signs.

A charge is not affected by interaction with its own E-field: the F_{el} acting on a charge = (its own charge) (E-field caused by all other charges).

SI-UNIT SUMMARY: the most common SI units for F, E, W & V are circled below.

F in in
$$n = \frac{h\alpha_{m}}{S^{2}}$$

E in in $n = \frac{h\alpha_{m}}{C} = \frac{V}{m}$

W in in $V = \frac{N_{m}}{C} = \frac{J}{C} = \frac{h\alpha_{m}}{CS^{2}}$

I've included combinations like "kg m²/C s² " for completeness, but you'll probably never use them*. Instead, just be sure every substitution you make is in SI units, and you'll know that any variable you solve for will be in the appropriate SI units. $\{$ * For example, a battery's voltage will almost always be given as "12 V", not "12 kg m²/Cs²". $\}$

REVIEWER: This was originally part of Section 10.7.

It will be modified some when it is made into a "chapter summary", but many of the main ideas are on these two pages.

{ As usual, each idea in the summary is explained in the regular chapter.}

To "liberate" t from the exponent of $e^{-t/RC}$, take the *natural logarithm* ("ln") of both equation-sides; the reason for this strategy is explained in Section 19.6.

$$\Delta V = \Delta V_{\text{max}} e^{-t/RC}$$

$$Q = Q_{\text{max}} e^{-\frac{t}{1000(5\mu)}}$$

$$\Delta V = 12 e^{-\frac{0005}{1000(5\mu)}}$$

$$\Delta V = 10.9 \text{ Volts}$$

In a series circuit, the order of battery, switch, resistors & capacitors doesn't matter. For example, each circuit below behaves the same during the process of charging:

A simple parallel RC circuit is analyzed in Problem 11-##, using V-logic principles. If your class studies "parallel" circuits or if you're curious, look at this problem.

The principles of RC-analysis are visually organized in the Chapter 11 Summary.

Thousehold for exponential decrease, $\Delta V = (\Delta V)_{max} \{ e^{-t/RC} \}$ cards. For exponential increase, $\Delta V = (\Delta V)_{max} \{ 1 - e^{-t/RC} \}$

Chapter 19 Summary

{ This is a rough sketch of ideas, not a polished finished product.}

There will be some discussion of these ideas in Ch.19 (au in Section 8.3).

DERIVATIVE DIFFERENTIAL
$$\frac{dv}{dt} = \alpha \rightleftharpoons dv = \alpha dt \rightleftharpoons \int_{v_i}^{w_i} dv = \int_{t_i}^{t_f} \alpha dt$$

$$S_{V_i}^{t} dv = S_{t_i}^{t} a dt$$

$$V_f - V_i = S_{t_i}^{t} a dt$$

$$V_f = V_i + S_{t_i}^{t} a dt$$

$$V_t = V_i + V_t + V_t = V_t + V_t$$

Maybe also refer to the relationships between X,V,a equations and X-t, V-t, a-t grapher, as discussed in Sections 2.10, 19.1 and 19.2.}

POINT SLOPE CONCAVITY AREA

TYPES OF EQUATIONS example

multiplication by scalar:
$$\overrightarrow{dL} = \overrightarrow{\tau} \cdot \overrightarrow{d\tau}$$

dot-product multiplication: $\overrightarrow{dW} = \overrightarrow{F} \cdot \overrightarrow{d\tau}$

non-vector: $\overrightarrow{dW} = \overrightarrow{P} \cdot \overrightarrow{d\tau}$
 $\overrightarrow{dV} = \overrightarrow{V} \cdot \overrightarrow{V} = \overrightarrow{V} \cdot \overrightarrow$

(An example of "other" types of derivatives is SUPERPOSITION-PRODUCTION of the Solvering things by electric charges of these properties:

(ELECTRIC FIELD (E), POTENTIAL (V).

(Gravity can also produce analogous properties.

(Magnetic Gild production is described by BIOT-SAVART LAW: $dB = \frac{\mu_0}{4\pi} = \frac{\overline{dJ} \times \overline{F}}{r^3}$

TIME-SPACE
$$\delta \alpha = \frac{dv}{dt} = \frac{dv}{dx} \cdot \frac{dx}{dt} = \frac{dv}{dx} \cdot V$$

FEL

V and E (or Fel and UEL) are related by DERIVATIVES and

DOT PRODUCTS

TAKING
PARTIAL
DERIVATIVES
$$\left\{ -\frac{\partial U}{\partial x} = F_x, -\frac{\partial U}{\partial y} = F_y, -\frac{\partial U}{\partial z} = F_z \right\}$$

ANALOGOUS

$$dV = -\left[E_{x}d_{x} + E_{y}d_{y} + E_{z}d_{z}\right]$$

$$-\frac{9x}{9A} = Ex^{3} - \frac{9\lambda}{2A} = E^{\lambda^{3}} - \frac{95}{9A} = E^{5}$$

MULTIPLICATION by a SCALAR

$$\overrightarrow{S} \overrightarrow{a} \overrightarrow{dt} = \overrightarrow{S} \overrightarrow{dv} (\overrightarrow{a} \text{ causes } \overrightarrow{\Delta v}), \text{ where } \overrightarrow{\Delta V} = (V_{xf} - V_{xi}) \hat{i} + (V_{yf} - V_{yi}) \hat{j} + (V_{zf} - V_{zi}) \hat{k}$$

$$S \propto dt = S dv_x (a_x causes \Delta v_x)$$

$$S \propto dt = S dv_x (\propto causes \Delta v_x)$$

 $S \propto dt = S dv_y (\propto causes \Delta v_y)$
 $S \propto dt = S dv_z (\propto causes \Delta v_z)$

$$S = At = S = Av = COURAGE AV$$

$$= \Delta V_{x} \hat{i} + \Delta V_{y} \hat{j} + \Delta V_{z} \hat{k}$$

(miscellaneous)

time-derivatives of Q:
$$I = \frac{dQ}{dt}$$

$$T \neq \frac{90}{100}$$

$$I = \overrightarrow{9} \cdot \overrightarrow{3} \cdot \overrightarrow{dS}$$

AESOP'S PROBLEMS

for 2.10, 19-A to C: examples of $x \leftrightarrow v \leftrightarrow a$, graphs \leftrightarrow calculus

4.11, 19-D: Making Variables Match

5.3, 19-E: Tangent Line Approximation
19-F: SUPERPOSITION, F= S dF, adding vector-components

5.6, 19-G: RATIO LOGIC, dm = (VOLUME) M+otal DENSITY, dm = p dV

10.2, 19-H: variable-matching flexibility, x-and-dx(failure) > 110 THIS O-and-do(success) > PROBLEM

MAXWELL'S EQUATIONS

Notice the uses of § dV and § dS for an enclosed volume, and § dS and § dI gov a surjove that is not closed.

GAUSS'S LAWS:
$$\stackrel{\leftarrow}{\epsilon_0}$$
 & ρ dV = & $\stackrel{\rightarrow}{E} \cdot \stackrel{\rightarrow}{dS}$ (for Φ_E)

$$0 = \S \ \overrightarrow{B} \cdot \overrightarrow{dS} \quad (\text{for } \Phi_8)$$

AMPERE'S LAW:
$$\mu_0 \left[\epsilon_0 \frac{\partial \vec{B} \cdot \vec{dS}}{\partial t} + \vec{S} \cdot \vec{J} \cdot \vec{dS} \right] = \vec{S} \cdot \vec{B} \cdot \vec{dS}$$

FARADAY'S LAW:
$$-\frac{d \cdot \cancel{9B} \cdot \overrightarrow{dS}}{dt} = \cancel{9E} \cdot \overrightarrow{dQ}$$

Here are three commonly-used integrals: $S \times dx \rightarrow \pm x^2$ $S + dr \rightarrow -+$ $S + dr \rightarrow lnr$

These (your 19.11) are not arranged in any special order yet.

$$\overrightarrow{A} = Ax \hat{i} + Ay \hat{j} + Az \hat{k}$$

magnitude of $A = \sqrt{Ax^2 + Ay^2 + Az^2}$

Is rector multiplication "reversible"?
$$\overrightarrow{A} \cdot \overrightarrow{B} = \overrightarrow{B} \cdot \overrightarrow{A} \qquad \overrightarrow{A} \times \overrightarrow{B} = -\overrightarrow{B} \times \overrightarrow{A}$$
also, $\overrightarrow{A} + \overrightarrow{B} = \overrightarrow{B} + \overrightarrow{A}$

MANY-SIDED EQUATIONS: A.B = AB coop = AxBx + AyBy + AzBz

$$\overrightarrow{A} \times \overrightarrow{B} = A B \text{ sin} \phi = \begin{vmatrix} i & j & K \\ Ax & Ay & Az \\ Bx & By & Bz \end{vmatrix} = (AyBz - ByAz)^{2} + (BxAz - AxBz)^{2} + (AxBy - BxAy)^{2}$$

(If \vec{A} and \vec{B} are parallel, $\vec{A} \cdot \vec{B}$ is MAXIMUM, $\vec{A} \times \vec{B} = 0$,) It give examples of \vec{A} and \vec{B} are perpendicular, $\vec{A} \times \vec{B}$ is MAXIMUM, $\vec{A} \cdot \vec{B} = 0$.) $\vec{F} \times \vec{F}$, and so on. I induction of $\vec{A} \times \vec{B}$ with "right-hand rule" (19.11 b) on 12.3).

For x or . rectors must be "same kinds".
For x or . rectors can be different kinds. *must be??