Chapter 5

Rotational Motion

This is a special chapter. It is one of my favorites, because it organizes a wide
variety of potentially confusing topics into a logical, easy-to-understand system.

Instead of the usual numbered sections (5.1, 5.2,...), there are 7 sub-chapters:
5A to 5G. This format provides flexibility, to let you easily "match" what your class
is studying — when you study a particular topic, find my corresponding sub-chapter
by looking for clue-words in this summary:

5A|— BASICS: ideas that are needed for the rest of Chapter 5.

5B|— a =v2/r: radial or centripetal acceleration

5C|- GMm/r2 gravity force, orbiting planets & satellites

5D|— MOTION: analogies to tvvax equations, with variables like A8, o, a,...; radians
5E |- TORQUE: what it is, how to calculate it

5F| -~ DYNAMICS: how torque causes angular motion to change; rotational inertia
(moment of inertia), T = Ia, rotational kinetic energy, angular momentum

— EQUILIBRIUM (STATICS): using torque to analyze a non-moving situation

Bonus: The derivations in Section 5.93 show the mathematical organization of rotational motion,
and its relationship with Chapters 2 to 4. It is "optional”, but recommended.

The flowchart below lets you see the overall organization of Chapter 5. The arrows
show possible orders-of-using. For example, you can use either 5A or 5E at the start,
but for 5F you need to know 54, 5D & 5E.
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9A: The Basics of Circular Motion.
Centripetal & Tangential Directions

Rotation is easy to understand if you know the similarities and differences
between closely related kinds of motion. Throughout Chapter 5, I'll use familiar
examples to help you develop this intuitive understanding,

Imagine you are in a car, moving at constant speed around a circular racetrack.

In the following view from above (a bird’s-eye view), . is the racetrack.
Tém—yo, T

C

To describe circular motion, it is useful to define two new axis-directions. The
diagram above shows the centripetal axis (marked with a "C ") and tangential axis
("T") at three different ear-locations.

The centripetal axis always points toward the circle's center, along a radius-line.
Because of this, it is sometimes called the radial axis.

The tangential axis is always perpendicular ( L) to the centripetal axis. It points
along the car's direction of motion, either forward (straight out the front windshield)
or backward (straight out the rear window). (It points forward if, as is usually done, you
define the + tangential direction to be in the direction the car is moving. It points backward if you
define + to be in the direction opposite to motion.)

Notice that the tangential axis keeps changing its east-west/north:south direction
as your car moves around the track, but the T-axis is consistent in another way:
it always points in the direction the car is moving. Similarly, the E-W/N-S direction
of the centripetal axis changes, but it always points toward the center of the circle.

The magnitude of the car's instantaneous tangential velocity, abbreviated "v.", is
the speed measured by the car's speedometer; vy is the car's instantaneous speed.

THREE KINDS OF ACCELERATION

Acceleration is defined as A[velocity vector]/At. A velocity vector has magnitude
and direction, so A[velocity vector] can occur in 3 ways: only v-magnitude changes,
only v-direction changes, or both magnitude & direction change.

These 3 possibilities are shown in the bird's-eye picture below. At time "i", two
cars are at the top of the circle moving eastward at 20 m/s. One car (shown by v~)
continues eastward while the other ( = ) moves along a circular path.

A few seconds after "i", the ~ car is moving eastward at 25 m/s. Its v-direction
is the same, but its v-magnitude has changed. This change-of-magnitude Av/At is
the regular linear acceleration, abbreviated "a", that is used in Chapters 2-4.

A few seconds after "i", the = car is moving south at 20 m/s on a circular path.
Its v-magnitude has stayed the same, but its v-direction is changing. This change-of-
direction Av/At is called centripetal acceleration*, abbreviated "a."; it is the focus of
Chapter 5B.  *It can also be called radial acceleration, "ag". }

A little later, the car is moving west along the circle at 25 m/s. Its v-direction is
still changing (so it has ac) and it is changing speed. This change-of-magnitude
Av/At is called tangential acceleration, abbreviated "a;"; it is studied in Chapter 5D,




:ggz —2A5w) 25 m/s toward east (only v-magnitude changes)
"lo 20 m/s toward south (only v-direction changes)
" N
20 25 m/s toward west (v-magnitude changes, while

v-direction is also changing)

There is only one kind of acceleration: a-vector = A(v-vector)/At, a, a;and ar are
just convenient categories that describe the AV/At for three common situations.
The difference between these a's is explored later, in|Part 3 of Chapter 5D.|

Chapter 5B: Centripetal Acceleration

As just described, when an object moves along a circular path it has "centripetal”
acceleration, a,. Analysis of Av/At (this is done in Section 5.93) shows that '

a, magnitude is v;2/r, where vr is tangential speed and r is the circle's radius, and
ac direction is always toward the circle's center, L to the v direction at that instant.

F (and thus a) that is directed along the line of motion will cause v-magnitude [speed] to change®,
but it can't make an object move along a curving path. On the other hand, F (and thus a) thatis 1 to
motion will cause v-direction to change, but it won't change v-magnitude*.  * These two principles
(Fj will change speed, but F1 won't) are emphasized in Section 4.2.

PROBLEM 5-A: A Horizontal Circle.

As shown in this bird's-eye view, a 1.25 meter string
makes a .40 kg rock move in a circle with constant
2.0 m/s speed, on top of a 150 c¢m high horizontal
frictionless table.What is the string tension?

If the string breaks when the rock is at the spot
marked "*", how far from the table's edge will it travel
(distance & direction) before striking the ground?

SOLUTION 5-A

Use F=ma for the centripetal direction: "T" is the only force toward the center of
the circle, and ac = v+2/r. A bird's eye view shows the rock's circular motion, but a
side view is needed to show the vertical forces or the motion after the string breaks.
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After the string breaks, the net force acting on the rock is zero; Newton's First
Law states that the rock continues to move with its pre-release velocity of 2.0 m/s
eastward until it reaches the table edge. If just-after-rock-leaves-table is "i" and
just-before-impact is "f", we know 3-of-5 tvvax for the y-direction [horizontal means
vi=0; a=-9.8; Ax=-1.50] and can find Aty =.55s. Then use the t-link (Aty = Aty)

for the x-direction equation: Ax = vy Aty = (2.0 m/s)(.55 s) = 1.1 m due east.

To continually change an object's v so it moves in a circle, centripetal force (F that
points toward the circle's center) is required. For a rock on a string, F. is obvious:
the string's T-pull. But what causes the F, when a car drives around a race track?
{The answer is given later.) How many different circular motion situations can you
think of ? For each of these, determine what causes the "centripetal force".

PROBLEM 5-B: A Vertical Circle.
A .400 kg block slides down a frictionless ramp; the
curved part is circular, with a diameter of 140 cm. At
the bottom of the ramp, the block's speed is 6.00 m/s. Tof
Draw the block's F-diagram at the 3 positions shown.
If your class hasn't studied "Work-Energy" yet, skip the rest
of this problem (come back to it later!) and read "Causes of
Centripetal Force". What N-force does the ramp exert
on the block at the bottom ? at the side? at the top? BoTTOM
If the block moves around the ramp without losing 6.00™/s
contact, what is the slowest vy it can have at the top?

SIDE

SOLUTION 5-A

The force diagrams for bottom, side and top are shown below.

In Chapters 2, 3 and 4B, we split equations into x & y components. Just like F=ma
can be split into Fx-max & Fy-may, it can be split into F=ma; & Fr=mar.

For substitution into F. =ma., Fcis + if it points toward the center, and — if it

points away from the center. If a force points in the tangential dJrectlon (L to the
radius-line), the F it contributes is zero. Study the F-diagrams and F=ma's. Do you

agree with all F, substitutions? Do you understand why each mg and N is +,— or 0?
If necessary, a force can be "split" into centripetal and tangential components; this is done in
Problem 5-#. Do you see why the F's at bottom, side & top don't need to be split in Problem 5-B?

The direction of N changes constantly (it is T, then « and | ), but in another way
N is constant because it always points toward the circle's center. In contrast, mg
always points | , but its centripetal magnitude keeps changing (it is zero at the sides,
maximum at top & bottom), and its centripetal direction flip-flops (it is — during the
bottom half of the loop, but + during the top half).

When an object's height changes, it is a clue to use the Total Work Equation. The
bottom-to-side TWE is mg(0) + ¥ m(6.0)2 =  mvgige2 + m(9.8)(+.70); the loop's diameter
is 1.40 m, so its radius is .70 m. This TWE can be solved for v2 = 22.3 at the side. The
bottom-to-top TWE , with Ah = +1.40, gives v2 = 8.56 at the top.

Do you see why two arithmetic steps are avoided if you solve for v2 (which can be substituted
directly into F=mv2/r) instead of solving for v?
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Why is N larger at the bottom than at the top? { In Problem 5-##, two reasons are discussed. }

When viop =V 8.56 = 2.93 m/s, Ngop = .97N.  If the loop is continuous (so it is O,
not \O ) and there is a small amount of friction, viop decreases with each revolution.
As viop continues to |, Niop also J until it becomes zero. { N drops to zero at the top before it
is zero at any other point in the circle. Instead of trying to "prove" this, I'll just ask you to accept that
it's true) At the critical N=0 point, F¢=mais "0 + mg = mv:2/r", which gives
vr = 2.62 m/s. If vp at the top is less than 2.62 m/s, mg=mv:?/r gives an "r" that is
less than .70 m. This means that the block won't travel around the full i circle, but
travels along a non-circular path like the - - - - shown below:

.,
~e
4

""

CAUSES OF CENTRIPETAL FORCE

The pictures below show some forces that can cause circular motion. T, N and mg
are illustrated in Problems 5-A & 5-B. The force of gravity (which can cause ac and
circular motion) extends to outer space; this is studied in Chapter 5C, "Gravity,
GMm/r2, Orbiting Planets". An airplane can change direction or fly in circles
because of the "lift force" generated by its wings.

If a road-curve is covered with frictionless ice, a car will slide off the road, like
Problem 5-A's rock when its string breaks. On a normal road, friction between the
tires and road provides the F¢ (and thus a.) that lets the car change its v-direction as
it moves around the curve. Similarly, friction lets a penny on top of a rotating
phonograph record ride in a circle without sliding.  { Problems 5-# to 5-# involve friction
on horizontal and "banked" roads, a phono record and a rotating funnel.}

TENSION N or g C-;rou\‘t;‘ YLif _ Friction
.):’1{.0 :..-'N\ij-:: E%Th ~%&“-/
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CAUSE-EFFECT: F.=ma, is a "cause — effect equation”. A centripetal force
"F¢" causes "m" to move along a circular path with an acceleration of "a;".

PSEUDO-FORCES: Centripetal is a direction (like x or y), not the name for a new
kind of force., Real objects cause real forces (like gravity, rope tension, N-push, or
friction) that can be drawn on a F-diagram. But there can never be a force caused by
"centripetal”, just like "x" or "y" don't cause force.

Similarly, velocity and acceleration don't produce force. { When your car turns a
corner, you seem to feel your body being pulled toward the outside of the curve by what is often
called "centrifugal" (not centripetal) force. Is this a real force, or illusion? This is discussed in
Problem 5-#: Centrifugal Force. }

RADIUS OF CURVATURE
If an object travels around only part of a circle, you can still find the magnitude
and direction of a. at a certain place. Just draw a "whole circle" that matches the
shape of the object's curving path at that point; this is done for the 3 *-points below.
Then use the center & radius of this radius-of-curvature circle to find the a; vector's
direction (toward the center of the circle) and magnitude (v2/r).

5C: Gravity, GMm/r?, Orbiting Planets

Part 1: Gravity Force = GMm/r2

In careful experiments, it has been observed that all objects attract each other with
gravitational force. Fgravity has a MAGNITUDE of GMm/ r2, where G is a constant-
of-nature with a value (in SI units) of 6.67 x 10-11, M & m are the objects' masses,
and r is the distance between the objects' centers. The DIRECTION of Fgravity is an
attractive pull, directed on a line between their centers.

Near the earth's surface, the magnitude of Fgravity can be described by either
"Fgravity = mg" (where g is approximately 9.80 m/s2) or "GMem/re2" (where M, & r
are the mass & radius of the earth). Compare these formulas. Does it look like g
equals GM./re2? This is almost true, but not exactly; the small differences between
g and GM,/r.2 are explored in Problem 5-#.

Chapter 5C covers only the "essentials” of gravity & orbiting. Your teacher and
text can fill in some of the interesting details about astronomy & scientific history.
Also, Problems 5-# through 5-## cover a variety of topics: Kepler's Second & Third
Laws, the earth's rotation, ratio logic, PEgravity = —GMm/r (optional), and more.

OPTIONAL: | Section 18.32|shows how to use calculus to solve Fgravity problems.
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Part 2: GMm/r2 can cause Centripetal Motion:
the Orbiting of Planets and Satellites.

As emphasized in Chapter 5B, circular motion is caused by centripetal force that
is directed toward the center of a circle. The picture below shows how gravity can
provide this force; notice that the GMm/r2 gravity-force points toward the earth,
which is at the center of the orbit-circle. Examples of orbiting are a planet (like our
earth) circling® around the sun, and the moon or an artificial satellite moving
around the earth.  *Orbiting objects actually move in paths that are ellipses, not circles, but the
same rotational-motion principles still apply. Elliptical orbits are discussed in "Kepler's Laws",
Problem 5-#.})

'."-_V'r
A

Earth Moo

To get the first formula below, substitute Fe= GMm/r2 and ac=v:2/r into Fe=ma,.
The other formulas are derived in Problem 5-#, using simple tools from Chapter 5D.

GMpd GM

2
P i 2 _ .3 = 132

where G = 6.67 x 10-11 Nm2/kg? (in SI units), M is the mass of the object in the
center, m (which cancels) is the mass of the orbiting object, r is the center-to-center
distance between the objects, v: and ® are the orbiter's tangential and angular speeds
(in m/s and radians/s), and T is the time it takes the orbiter to make 1 revolution.

w1

{If you haven't read Chapter 5D yet, you can ignore the third formula and "©".)

PROBLEM 5-C: How to Use the Orbiting-Object Formulas
Part 1: If a 150 kg satellite stays directly above the same spot on the earth during
its orbit, how high is it above the earth's surface? How fast is it moving? { The earth's
mass and radius are 5.98 x 1024 kg and 6.37 x 103 km.)}
Part 2: The moon circles the earth once every 27.32 days. If a satellite which is
4.225 x 107 m from the earth's center orbits in 1.00 day, how far is it from the earth's
center to the moon? ({ Pretend that you must use "ratio logic" because you don't know mearth . }

SOLUTION 5-C

Part 1: The satellite must "match" the earth-spot's rotation and make 1 revolution
every 24 hours, 80 Tsatellite = (24 hours)(3600 s/hr). As shown below, you can solve for
"r = 4.225 x 107", which is the distance from the satellite-center to earth-center.

cM 3 - 3
Taa— sat = Nt
! W
(66TxIQ :Sasx\o 7(:uxseoo)“ I
4235 10" mefers = I}

To answer "... how high is it above the earth's surface?", subtract the earth's
radius to get a height of 4.225x107 —6.37x106 = 3.59x107 m = 35900 km = 22300 miles.
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For 1 revolution, vr = distance traveled /At = 2x (4.225 x 107 )/86400 = 3070 m/s,
which is 6870 miles/hour. Or you can use equations from Chapter 5D to get the
same answer: vy =r@0=r[2xf]= r[2r(1/T)].

Part 2: Several "ratio logic" strategies are discussed in Section 19.9. One method
is shown below; when the moon-equation is divided by the satellite-equation (why is
this an acceptable algebra operation?), M, cancels and you can solve for rmoon.

ggghf G
G ®
(21 3471)3 - rms

(1.00%* 7 (45x)8")3
333 % 103 m = Ty

When equations are divided like this, you can use non-SI units like "days", but you must be
consistent. You cannot, for example, use 27.32 days for tmeon and 24 hours for Tgarellite -

A memory-trick : to remember the T & r exponents for
ratio logic (as used above), think-and-hear "T-two , r-three".

= —————————

o5D: Rotational Motion tvvax Analogies

Part 1: Rotational Distance, Velocity and Acceleration.

To help you understand the rotational analogies to "tvvax" linear motion, we'll
continue the race car example from Section 5A.

If a car drives 30 m/s for 25 seconds in a straight line, it travels a linear distance
of Ax =(30 m/s)(25s8) = 750 m. Ifit drives around a circular track at 30 m/s for 25 s,
it still travels 750 m; this around-the-circle distance is tangential distance, As. In
the middle picture below, notice the difference between As (the actual distance the car
travels™) and d (the displacement vector made by drawing a straight line from i to f).

* The change in the car's "odometer” (its mileage-meter) is As.

In each example above, the car's speedometer reads 30 m/s. If motion is in a straight line, this is
linear speed (v = 30 m/s). If motion is along a circular path, it is fangential speed (vr = 30 m/s).

The car's movement can also be described in terms of angular distance. If the
distance around the circle is 1200 m, 750 m is 5/8 revolution or (because 1 rev = 360
degrees) 225 degrees; this angular distance is abbreviated "A9".

Ax : As JaY<)
linear distance - Tongential distance ongular distance

A
e D o

(]
.
.
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3 kinds of velocity are defined by dividing distance (either linear "Ax", tangential
"As", or angular "A0") by At. These are abbreviated v, vr and o, respectively.

Similarly, 3 kinds of acceleration are defined by dividing Avelocity (either linear
"v", tangential "v;" , or angular "®") by At. These are abbreviated a, a; and «.

Here are the six DEFINING EQUATIONS for velocity & acceleration:

LINEAR | TANGENTIAL | ANGULAR

disTonce Ax As Ae

’ H é_).(. = _A_%. = QQ- =
velocity SV | eV | W

1 Lw AVt o Aw -
occeleration i =0 | fr o | e

Later, Problem 5-D illustrates most of the ideas and equations in Chapter 5D.

Part 2: Radians and Connecting-Equations

RADIANS are needed to conveniently describe rotational motion in equations.

This 4-step "visual explanation" will help you understand what a radian is:

1) Cut a string ( === in the picture below) to the exact length of the circle's radius.

2) Imagine that the circle has a low rim, so you can stretch the radius-string
around it as shown in the second picture. Now draw lines from the circle's center to
the end-points of the string. The angle between these two lines is defined to be a
radian, abbreviated "rad".

3) To get an angle of 1.4 radians, stretch 1 whole string and .4 of another string
around the rim. Then draw lines from the circle-center to the string's end-points,
as shown in the third picture. The angle between these lines is 1.4 radians.

4) The distance around a circle (its circumference)is 2nr; © = 3.14159..., 50 2nr
is approximately 6.28 r. 2mn radius-strings will go once around the circle, so

1 revolution = 2x rads = 360 degrees. Dividing 360 by 2r gives 1 rad = 57.30 degrees.

© CRERELED) ?

If the third circle above has a radius of 5.0 m, the angle of 1.4 radians (made by
stretching 1.4 of the 5-meter radian strings along the rim) covers a distance of 7.0 m.

In the following equation, A® must be in radians if the units are to cancel properly.

5.0 meter
radian

AO r = As

1.4 radians = 7.0 meters
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As = rAB shows the "connecting relationship" between tangential and angular
distance, so I call it a connecting equation. To derive the analogous connecting-equations
for velocity and acceleration, just divide both sides of As=rA8 by At and use the definitions of vr & o,
then divide again by At and use the ar & o definitions. (These derivations are done in Section 5.93.)

Important: Use only radians for A9, ® and o in these

CONNECTING EQUATIONS:

As = r AB
Vr =T ®
ar =1 O

As , A9, vr, ®, ar and o each appearin a
defining-equation (Part 1) and in a connecting-equation.
You can use these any of these 6 variables for solve-and-use links.

Part 3: Comparing 2 kinds of Velocity,
and 4 kinds of Acceleration.

The difference between TANGENTIAL and ANGULAR VELOCITY:

Four cars have a 1-lap race, as shown in the 4 pictures below. Two cars are slow
[15 m/s] and two are fast [30 m/s]. They race on a large track [ r = 382 m, circum-
ference = 2nr = 2400 m] and a small track [r = 191 m, circumference =1200 m]. The
pictures below show the position of each car at the finish, the instant the fourth car
(which wins because it is going fast on a small track) finishes its lap after 40 seconds.
Compare the vr's and o's of each car. Do you see why identical vr's doesn't
necessarily mean identical @'s? (The car with the largest @ wins this 1-lap race. }

CALCULATIONS. The third car's o can be calculated with a connecting equation:
o =vr /r = (30 m/s)/(381 m/radian) = .0785 radians/s. Or you can solve the w-defining

equation: ® =A0/At = (.5 rev)(2n rads/rev)/(40 s) = .0785 radians/s.
If you want, calculate the second car's w, and you'll see why it is also .0785 rads/s.

Using "ratio logic", do you see why the second and third cars have the same w?

same slow Vr, same fost vr,
diffevernt w's different w's
‘- \ [ \
{ I‘Sm f;);\\
\ 3

different V¢'s,
Same medivm W
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Points a & b on this spinning plate have the same ® (they make 1 revolution in the
same time), but different v:'s (b travels further during the revolution, so it is faster):

This relationship can be explained using connecting-equation "ratio logic":
vr = r o, and o is the same for both points, so vr increases as r increases.

COMBINED MOTION: LINEAR + ROTATIONAL

Watch the tires of a forward-moving car; the tires rotate as they move forward.
Compare the forward-only movement of the entire car (which can move around a circle-track even
though it doesn't "rotate” by tumbling end over end) and the tire’s "forward-and-rotating" motion.
Do you see the important difference between the car-motion and the tire-motion?

In the first picture below, during 1 revolution of the tire a "rim point" * moves once
around the tire-circumference: ®* moves through an angle of 2rn radians, and has As
= 21 rrim = AQ rrim. The right-side pictures show a tire at the start, middle & finish
of one revolution. Watch the contact-surface of a rolling object, think about what is
happening, and convince yourself that the tire will move forward a distance equal to
the As of a rim-point: during one revolution, (Ax)iire = (AS)rim = Trim A9 = 2% r.

—
" !
for 1 revoluTion i for 1 revolution |

Notice that Asrim is the "rotational distance" moved by the rim-point . When the tire is rolling,
Asrim doesn't include the sideways movement of e as it is carried along with the tire toward the right.

{ Another interpretation of bombined movement is given in Problem 5-1#, which shows an easy way
to calculate the "instantaneous total velocity" (rotation-v + sideways-v) of a rim-point.}

Dividing "(Ax)object = (A8)rim = Trim A8" by At and using definitions (for v, vr, ®)
gives the analogous relationships for velocity that are shown below. Dividing by At
again and using definitions (for a, ar, a) gives the "acceleration relationships"”.

For NON-SLIP ROLLING, with all angles measured in radians,

(AX)object = (AS)rim = Trim A8
Vobjet = (Vrlrim = Trim ©
Aohject = (ar)dim = Trim ©

These equations are valuable; they are used for problem-solving in Chapter 5F.
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ANGULAR VELOCITY UNITS

Four ways to measure angular velocity are @ (in radians/s), f (in revolutions/s)*,
rpm (revolutions per minute), and {a unit that isn't used often)} in degrees/s. The
time-per-revolution [T, in seconds/revolution] isn't an angular speed, but it
expresses the same information. *another symbol for frequency is "v"

These five can be interconverted by using the conversion factors "1 revolution =
2n radians = 360 degrees” and "60 seconds = 1 minute", plus the fact that
f (in revs/second) can be flipped upside down to get T (in seconds/rev).

The equations below can be derived by playmg w1th links, definitions & conversion
factors. Notice that each equation inside the i...} has only 2 variables; if you know

either of them, you can find the other. If you ],gggﬂ any 1 of these4 (@, f. rpm, T),
you can find all of the others, so w/f/rpm/T is really just 1 variable, not 4. And if
you know 2 of these 3 (vr,r, 0/f/rpm/T ), you can find the third.

. mefers 3 QA r
Vr = rw V+  Secona Vr = =
= |
radions ¢ S A ) 5 seconds S
W Second W= 31‘!‘(_-1- revoluTion
N\ |
1] |
w=Anf f=5, F=7T

_F TevoluTions

“second

CONVERT wiTH
60 = L winute

revolulions

r P minute

FOUR KINDS OF ACCELERATION

are linear (a), tangential (ar), angular (o) and centripetal (a,).
The summary below will help you understand their similarities and differences.

The first part of the summary is SITUATIONS. Three important types of motion
are discussed at the end of Chapter 5A: linear (with only "a"), constant-speed
circular (only a.), and changing-speed circular (ar and o, ac).

F=ma EQUATIONS: "F¢ =m a." is used to solve problems in Chapter 5B. Later, in
Chapter 5F, Fr =mar and t=Ia are discussed.

MAGNITUDE: Can you find 3 defining equations and 1 connecting equation in the
summary? Here is an easy derivation: a, = v:2/r = (r@)2/r = r2@2/r = r2.
{ For 2-D situations, Av/At = a can be split into x & y components: Avx/At = ax and Avy/At =ay.)



DIRECTIONS are discussed in Chaptersand the start of 5B. A principle from
Section 2.2 is true for v-and-a, vr-and-ar, w-and-o; if speed is increasing v and a point
in the same direction, but if speed is decreasing v and a point in opposite directions.

Optional: 1) To get the "total acceleration vector" for circular motion, add the a¢ & ar components
(which always point L to each other) as vectors. 2) For most purposes, you can consider o to be in the
same direction (with the same + sign) as ar, but the "real direction" of the a.-vector is discussed in

Chapter 5E's Step 4.

WHAT IS CHANGING? For a & ar & «, the magnitude (of v & vr & ) is changing.
But for a¢ it is v-direction that is changing, not v-magnitude.
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Part 4: A "tvvax System" for Rotational Motion

The tvvax system, a simple yet powerful tool for analyzing linear motion, can also
be used for rotational motion. Just do the following 3-step transformation: turn a
tvvax equation (with At, v, a, Ax) into a tvvas equation (with At, vr, ar, As), make all
possible connecting-equation substitutions (As = A0 r, v; = wr, ar = ar), cancel the r's.

If you do this for each tvvax equation, you'll get 5 analogous "twwad" equations:

Ve-Yi= o | ax = (V_:;_\Lg)-\. Ax=‘la‘l‘*%‘0*=

ax= Vet- ‘\50"\'=A

-V = Qo (Ax)

We - i = Ae=(ﬁ§9f—1- 86 =wt+ et

88 = wT-F ot

2w = Y« (hQ)
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The overall result of these derivations is that every linear-motion variable has
been replaced by (even though it is not "equal to") the analogous angular-motion



variable. This transforms "pure linear" tvvax equations into "pure angular" towo®
equations. The difference between replacement and substitution is important:

As isreplaced by A8, but As equals r A8.
vy isreplacedby ® , but vr equals ro.
ar isreplacedby o, but ar equals ra.

tvvax strategies (as in Section 2.4 or the Chapter 2 Summary) can be used for twwad:
Read/think/draw, choose i & f points for a constant-o interval, make a twwad table,
look for 3-of-5, choose a 1-out equation, substitute and solve, answer the question.

UNITS: "o" is used in writing the twwa® equations; this seems to imply rads/s,
but other units can be used for angular velocity. Most rotational motion equations
(connecting-equations, Chapter 5F analogies to F=ma & Work-Energy & Impulse-
Momentum, .... ) require the use of radians. But for twwad, just be consistent:

You can use all radians & seconds [ s, rads/s , rads/s2 ,rads]* or
you can use all revolutions & seconds [ s , revs/s , revs/s2 ,revs]* or
you can use all revolutions & minutes [ mins, revs/min, revs/min2, revs ], or
you can use all degrees & seconds [ s, degs/s , deg/s?2 ,degs],
but you can't mix rads with revs (or degrees), or seconds with minutes.
{*These are the two most common unit-combinations for tomos. }

PROBLEM 5-D: Using the Rotational Motion Equations

Starting from rest, a plate with 160.0 cm diameter takes 10.0 seconds of constant
acceleration to reach 240 rpm. During this 10 s, what is o (in rads/s), and how many
revolutions does the plate make?

At the end of this 10 s, what is ©, T (time per rev), v» and a, for a point that is 10 cm
in from the outer edge? Are these answers different for a point on the outer rim?

SOLUTION 5-D:

From O To 0w Using "AS out” Using "o out’

At= Ow We-Wi = ot AT A0 = ¥ (wi + we) AT
wi= O _ W -0 = xU0) 06 = .5 (0+%0"¢)10s)
We = MO (e | HO TR = o A = 20 revolutions
x = (o) 4o ™™o =

be = A5 ™R =

These 2 questions involved an interval. The next 4 questions ask "What is happening at one instant ?".
The plate has r = }(1.60m) = .80 m, so a point 10 cm in from the rim has r =.70 m.

240revs 1min 2x rads _ 951 rads
O = Thin 60s 1rev s

1 1

T = ¥ = ©a0/60)revels ~ 208
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VT = r w O = -\r(-:f- Oc¢ = r UJ:
= r 2nf (7.6} = (1003540
= (10)(am{(H.0) = o = Q| m™/gd
= |7.¢6 ™ _

1.6 " = hH3 M2 § CACSE pat B3

For a point on the rim, the "instantaneous ©" is still 25.1 rads/s,
vr = ro = (.80)25.1) = 20.1 m/s, and a, can be calculated by either
ac = ro? = .80(25.1)2 = 505 rads/s, orby ac=ve2/r=(20.1)2/.8.

5E: Torque

This sub-chapter shows how to calculate torque, abbreviated t.
Chapters 5F & 5G show how to use torque for solving problems.

Torque is the ability of an applied force to change an object's rotational velocity;
the relationship of force and torque is discussed in detail at the start of Chapter 5F.

To calculate the torque acting on an object, use the following 5-step process.

Step 1: Draw a F-diagram, showing all forces that push or pull on the object.
You must draw each F at the place where it is actually applied to the object.
Step 2: Choose a t-axis. {t is always calculated "with respect to" a specific axis.}
Step 3: Use a t-formula. In the bird's eye pictures below, a door rotates on its hinge
(this hinge is the obvious choice for t-axis) and is pulled by a force "F". Two
1-formulas can be used. Here are explanations of how to use these formulas:

For T = r F sinf, T is a line drawn from the t-axis to the point where F is being
applied, and 6 is any angle between F and r (or their extensions). Look at the first
picture below, and imagine you are pulling the door with the F|;-component. Can
you make the door rotate? No. But the door will rotate if you pull it with F, , because
torque is only produced by F that is 1 to the r-vector. As shown in the derivation
below, "t = r F,"is the foundation equation for "1 = r F sin6".

Oruse T = r, F. Tofindr, (which is often called the lever arm or moment arm),

a) Draw the extensions of F, as shown by the - --- lines on the right picture below.
b) Ask "Where does this F-extension come closest to the T-axis 7, and answer "When the
axis-to-extension line (shown by --- -) makes a 90° angle with the extension.
c) Thelengthof -, the shortest axis-to-extension line, isr, .
T = F v Am® ™ = r. F
L /I/’
HINGE
T-AxS Faime=F, F F
]
',/<° A
fe—r—— % -—*-3R e )
ramo=rn &~
T =7 Fy g
7 = r (Fun®) .
T = r F aim6
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Do both methods give the same answer? Yes: r, is rsind,so t = r, F = r(F sin6).

Step 4: Determine the * sign of torque by using this 4-step process:
A) POINT your pen in the direction of r (from the t-axis to the F-point ).
B) HOLD one end of the pen down at the t-axis.
C) PUSH OR PULL the pen (at the F-point) in the direction F points.
D) WATCH which way the pen rotates. If you have defined ¥\ to be + (this is
usually done, unless there is a good reason to define /¥ as +) and the pen
rotates ¥ , T ig +; if the pen rotates ¥, 1 is—.

OPTIONAL: If your class uses "vector cross products”, or mentions a "right hand rule” or torque
direction, read this paragraph and also Section 18.62, * Here is an easy right-hand rule: held your
right hand like this [ % ], curl your fingers in the rotation-direction, and your thumb will point in
the t-direction. For example, ¥ rotation makes your right thumb (and ) point downward toward the
page. This same process is used to define the direction of an a-vector (o is studied in Chapter 5D) or
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L-vector (as studied in 5F). {For most physics calculations these "vector-directions" are not used, -

but they are needed to determine the precession direction of a spinning top or bicycle wheel; this is
explained in Section 5.94.)

Step 5: If more than one torque acts on an object, 7 tota] = the sum of individual 7 's.

UNITS: Because t=Frsin6, t has units of "N'm". [In Section 4.1, work is defined as
W =Fd. Work also has units of "Nm", but the "Nm" of W (which is a "Joule") is not the same as the
"Nm" of . I won't try to explain the reasons for this difference, but will just ask you to accept it.]

A comment on Step 2: A t-axis is actually a line, but in a 2-dimensional diagram it is drawn as a
"point". For example, a door's hinge (the axis about which it rotates) is a vertical line; but in the
bird's eye 2-D diagram above, this axis-line appears to be a point.

CHOICES: If your class studies how torque changes angular motion, move ahead
to Chapter 5F. If you are using torque to study static situations, skip to Chapter 5G.

CHOICES: If you haven't read sub-Chaptérs 54, 5D and 5E yet, do it now. .
Study 5F's Part 1 first, then use the "CHOICES" suggestions at the end of it.

5F: Torque Dynamics — Rotational Analogies for
F=ma, Work-Energy, Impulse-Momentum.

Part 1: Rotational Inertia

Rotational inertia (or moment of inertia), abbreviated "1", is defined as I = mr2,
Why? To find out, let's look at how F=ma can be used to analyze circular motion.

As discussed in Chapter 5B, centripetal force (F) makes an object move along a
circular path. But Fcis L to the direction-of-motion, so F¢ doesn't change an object's
speed. Only tangential force (Fr) along the direction-of-motion will produce ar that
changes an object's vx ; this is expressed in the formula "Fr = m ar".

The bird's eye picture below, of a disk rotating about its center, shows that Fr is 1
to the r-vector. The Fr in "Fr = m a;" is the same as the F, in "t =F, r", so the
t-formula can be written "t = Fr r"; this is used in transforming F=ma into 7 =Ia.



101

m O«

Fr =

AR V¥
(F) = (F)(=en)
T = T

In the transformation above, the r's neatly cancel, to turn F=ma into its angular-
motion analogy t=Io.. Why do the r's cancel? Because I is a "fudge factor variable",

defined as it is (I = mr2) for the purpose of making the r's cancel. Very clever.

Here are some analogies between linear and angular motion.
F causes linear acceleration "a", while © causes angular acceleration "o
m is an object's resistance to havmg its linear velocity changed: as m 1, a i .
I is an object's resistance to having its angular velocity changed: as I T, o l.

" "

To calculate I, use the following 4 principles.

1) TOTAL = SUM OF PARTS. For a system of several
objects, Itotal = sum of individual I's. For example, the
system at the right is a small heavy box (240 kg) resting
.5 m from the rim of a solid wood cylinder (400 kg, 2.5 m
radius). As you would expect, the system's total I is:

Itotal = Iphox + Icylinder

2) FOR A "POINT OBJECT", I = mr2. A point object is so small that we can
assume all of its mass is located at one p point in space, at a distance "r" from the
axis-of-rotation. {Like 7, I is always calculated "with respect to" a spemﬁc axis.)

Let's assume that the 240 kg box is small enough (relative to the size of r) to be
considered a point object, s0 Ipox = mr2 = (240 kg)(2.0 m)2 = 960 kg m2.

3) FOR A NON-POINT OBJECT, I =X mr2, where X is a "cut-down fraction" that
depends on the object's shape. (Al of the box's mass is 2.0 m from the axis. But the wooden
cylinder has its mass spread out at different values of r. Some of its mass is close to the axis, some is
far away, and most is in-between. The math technique of "calculus” splits the cylinder into millions
of tiny masses, finds the mr2 of each tiny mass, then adds these mr2's together to get the cylinder's
total 1.} The results of such calculations are summarized in tables like the one below.

Notice that each formula fits the format of "Iipta] = X mr2",

* THIN THIN RoD THIN ROD CYLINDRICAL
SOLID soLip® SPHERICAL ROTATING ROTATING SHELL ¥
c.w.mor:n SPHERE smsu. * ABOUT END ABOUT CENTER (“heop")

4 ) é ) 6“"3 X eL— D
- —

T=gm&® I=7nmd®  I=lme?

wl»

I=2m

* SOLIDS and SHELLS: For a solid sphere, X = 2/5. But if a sphere is a hollow "shell”,
like a basketball with all mass at the outer edge, X = 2/3. (A cylinder can also be solid or a shell.}
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These 3 principles (total = sum of parts; I=mr2 or I=Xmr2)
can be usedto find the total rotational inertia of the box-and-cylinder system:

Itotal Ibox + Icylinder
(240X2.0)2 + (% X(400)2.5)2
960 + 1250

2210 kg m2

A third category: OTHER KINDS OF OBJECTS. If you encounter an object that doesn't fit into either
of these categories (point or "standard Xmr?2 shape"), improvise — use common sense, calculus, ...

OPTIONAL: Two other ways to calculate I,
the parallel-axis formula and radius of gyration, are discussed in Problems S-## and 5-##.
The Aesop's Problem in|Section 18.33]shows two essential strategies for setting up integrals.

CHOICES: Use Parts 2 (Equation Overload), 3 (Angular F=ma: t=Id ), 4 (Angular
Kinetic Energy & Work) and 5 (Angular Momentum & Impulse) in any order.

Part 2: How to Cope with "Equation Overload"

Chapter 5 has introduced many new variables (a., F¢, As, v., ar, Fr, A6, o, f,
rpm, T, o, 7, I) and equations and concepts. How can you make sense out of it and
not be overwhelmed by "information overload"? Here are some useful suggestions.

The key is to understand the equations you are using.

1) ! " i i 2
Here are three examples. a) If [and only if ] o is constant between an interval's
initial & final points, then you can use the tmwo® equations. b) Chapters 5A &
5D compare closely related types of motion, to help you understand the different
kinds of distance & velocity & acceleration, so you can decide which equation(s)
can be used for a particular problem-situation. ¢) Part 1 of 5F splits objects into
3 categories: point objects (I = mr2), basic shapes (I = Xmr2), and "other objects".

2) r 1 r strategies that tell hen i be used?
Know and use equation-choosing tools like the 1-out strategy of Section 2.4 and the
principles in Section 4.12. You can use these tools over & over again; for
example, the 1-out tvvax strategy is used for towo®, and 4.12's ideas can help you
choose between the angular analogies to tvvax, F=ma, FAx=AKE and FAt=Amv.
3) Learn the logical relationships and "vari links" n ion
The chapter summaries (especially for Chapter 5) organize equations in a logical,
visually meaningful way; this makes it easy to use equations for problem solving.
The importance of "linking" is discussed in Sections 2.3, 3.4, 4.1 and 5D. For
example, if you know the equations that contain "a" (tvvax, F=ma, ar=ro) and
you need the numerical value of a to solve one of the equations, you'll know where
to look for it — in one of the other equations that contains a.

Is it a "constant of nature"” with a fixed value you can find in a table, or a variable?
What word (or words) can be used in a problem-statement to describe it?
What units does it have? What does it look like in a picture?
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5) Learn "1 ils" that h m i

Learn from your own discoveries, from problems that are worked out in this book,
in your main text, and by your teacher. Use active review (of Flash Card Reviews
and Chapter Summaries,...) TNr

Part 3: Angular F=ma (t=1a)

At the beginning of 5F's Part 1, some relationships between F=ma and t=la. were
explored. Now we'll look at how F=ma & t=Ia can be be used to solve problems.

In Chapter 3, pulleys were "massless”. What can we do if a pulley does have mass?

PROBLEM 5-E: Using t=10 on a Real Pulley.

The pulley at the right is a solid cylinder, with an
axle through its center and a small groove in its edge
for the rope. It has a 30 ¢cm radius and a weight of
100N. There is enough friction between pulley and
rope to keep the rope from slipping. The pulley
bearings are frictionless, and so is the ramp.

Find the block-accelerations and rope-tensions. ////// / /‘&
1.5 s after starting from rest, how many revolutions
has the pulley made? How far have the blocks moved?

SOLUTION 5-E

MOTION: v; = 0, and 7.0g is larger than 10.0g(sin 25°), so the 7 kg block moves
downward and the pulley rotates 7¥. The blocks, rope and pulley-rim have matched
motion, as discussed in Combined Motion, Linear + Rotational" (Part 3 of 5D), this
means that aplocks = @rope =* (ar )nm =TIrim . Notice the two underlined terms;
the substitution of "aplocks /rrim = 0" is a key step in solving the equations below.

* This equal sign is true only if the rope pulls the rim /¥ with no slipping, thus
causing the pulley-rim to move at the same speed as the rope.

TORQUE: In the F-diagram below, T1 and T3 are not equal. T tries to turn the
pulley ¥\, opposite the rotation-direction I've chosen to be +, by producing a torque
of —.30Ty* To produces a 7y torque of +.30 T2. The pulley accelerates /¥, so T2
must be larger than Ty . * The rope pulls the pulley in the tangential direction (so T is L tor) at
the two "points of tangency" marked by o's. Because Tandrare L, TisF, andrisr,: all three
tformulas[tT=rFsin®, t =rF,, 1=r F] give 1 =Tr. :

ALGEBRA': 4 steps are shown below —@ @ @ ) @) . InStep1, both sides of
the pulley equation are multiplied by 1/r (Whlch is 1/.3), and all r's disappear! Step 2
adds all 3 equations together, as m cancelling the "internal" T's so you
can solve for a. After Step 3's two substitutions, using "a = 1.23" in all possible
places, one equation can be solved for To. Step 4: "use" Tg and solve for T;.
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for the 10 kq \:loc;ll for the pulley for the T kf) blocks
F = mo. T = I T+Ta =7 o
) 93
~10g 23S +T; = 10ar {-3Team =[F® 1AL £
{ e o ae %"é’} -Ti+ T3 = Slao -Ta +63.6 = 7(1.23)
T+ 73_= Ta ‘ {5{9 {;@ E0ON = Ty
~10g.aim3s* +Tg = Mla, -Ti +(600) = 5.1(1.13)
s ‘.;3 = O 337 = -rl

Knowing a = +1.23 gives 3-of-5 towab [At =1.58, ©; =0, o = a/r = (1.23/.30) rads/s
(remember that radians must always be used in connecting equations like a=ra.)]. To get A9,
solve the wr-out equation "A® = wjt + y t2" for A6 = 4.61 rads, then answer the
problem question by converting to revs: 4.61 rads (2x rads/rev) = .73 revs.

To find how far the blocks have moved, use Axplocks = AXrope = ASpim = Yrim AO =
(.30 m/rad)(4.61 rads) = 1.4 m.

In the method above, we used twwoS to get ABpulley and then used Ax=rA0 to find Axpjocx. This order
can be reversed. If you want, try it yourself: first solve tvvax for Ax, then use Ax=rA® to find A8 pulley -

Part 4: Angular Work-Energy

This section assumes that you have read|Chapter 4A|( Work — Energy).

Let's continue the analysis of COMBINED MOTION (Linear + Rotational) that began
in Chapter 5D's Part 3. In the first picture below, a spherical shell (mass 8.00 kg,
radius .75 m) moves forward on a frictionless surface at 3.00 m/s, without rotating;
this forward motion is called translational motion. In the next picture an identical
ball spins on an axle at 4.00 radians/s, without moving forward; it has rotational
motion. The last picture shows what happens when the ball rolls without slipping;
as discussed in "Combined Motion", its translational-v (3.00 m/s) and rotational-w
(4.00 radians/s) are related by " Vobject = T'rim ®".

The first ball has kinetic energy caused by only translational motion; KE = ymv2.
The second ball has KE caused by only rotational motion: this is (using an equation
that is derived soon) KE = yIw2. The third ball has KE caused by both types of
motion: KEota) = KEtranslation + KErotation = $mv2 + 3 Iw2.

TranglaTional KE RetaTional KE (Trans\quonc‘x‘\“ +RsfaTionol) KE
i - 4 rads/s L vods /s
™ —— g 3
3% @ 3 ™5
7z 777, T7777777 7777777777 77 T, 77777
TmoV s I W amvied T W
5 (3P T Xmort w $O6F + 430G}
36 & $[3 @ GsP 3% + o

QL}W 60 %@.Qw

For an 8 kg rock moving around a circle of .75 m radius at 3 m/s (which is
® =Vvo/r = 4 rads/s), KE can be calculated using either of these methods:

KEtranslation = 3 mv2 KE otation = % 1 w2
= 5 (8)(3) = § [8(.75)2](4)2
= 36 J = 36 J



105
This derivation shows why m(v;)2= $Iw2 for a point object like a "rock on a string™

KE =% m Vp 2
KE = § (I/r2)(rw)2
KE =} I w2

A rotating non-point object (like the second ball above) can be analyzed as if it was
a combination of millions of tiny masses. If "calculus” is used to find KE = ¥ mvZ
for each tiny mass and then add them together, the result is: KEqpject = % Lobject 2.

For any object, TOTALKE = translational KE + rotational KE = 'mv2 + :lw2.

To determine whether both motions contribute to an object's KE, ask "After one
complete revolution, has the object moved to a different point in space?”". For the
rolling sphere, the answer is YES because it has moved forward a distance of 2xr:
the sphere has KEyans) and KEyotn. For the rock-on-a-string, the answer is NO
because it has returned to its starting place: the rock has only one kind of KE
{even though this KE can be calculated in two different ways, as shown above].

PROBLEM 5-F: What is the friction direction if a ball (r =.75m, v=0, ® = 4.0 rads/s)
makes contact with a friction-producing surface? If v=3.0 m/s and o =4.0 rads/s?
If v=3.0m/s and w=0? If it rolls (without slipping) down a ramp? Up a ramp?
In each case, is friction static or kinetic? {The answers are given soon.}

PROBLEM 5-G: Using the Total Work Equation for an "Object Race".

Three 1.50 kg objects (a block, solid sphere and solid cylinder) are at rest at the top
of a 3.00 m high, 36.9° ramp, pi between the block & ramp is .20, and there is
enough friction to make the sphere and cylinder roll without slipping.

Use the Total Work Equation to answer these questions: Which object reaches the
bottom of the ramp first? At the bottom, what is the KE of each object 7

SOLUTION 5-G
In the rolling-object TWE below, why is Wgriction = 0? {The answer is given soon.}

S\ic\'mg:’vg\\_)jec"f T.W.E. (‘?or b\ock}

I+ mghy = Tl mohe + | i N 360 \
O +mAE3) = Fmyo + 0 +[ .20 m(‘?.x)m%ﬂ(mﬁ?\
85T ™s = Ve

Rolling=Object T.W.E, (for cylinder g’r;\sﬁp\ﬁere}

';va,n-\- ™m g hi = ‘E“'.‘TVTWF1 +3 I w? }"' mﬁh" * ]W%ic:t‘ion\

O + mEED = A mvd «+&(eflE) + 0+ O
3arg = v 4 K(Farvt)
\ ' _
For sphare, A=4 For cylinder, X=.5

and Ve= LHR M/, ond V¢ = §,96 M/s,
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Each object has v; = 0, with constant F (and thus constant a) throughout the race.
By solving tvvax equations (or using common sense), it can be shown that the object
with the largest vr also has the smallest At. The block wins the race.

In the equations above, "m" cancels; as in other "Great Races", mass doesn't matter. But "shape”
does make a difference. Do you see why the sphere (with X = .4) beats the cylinder (with X = .5)?

The block's final KE is mv;2 = .5(1.5)(6.57)2 = 32.4 Joules. The sphere's KEris
tmve2 + $Xmv2 = 5(1.5)6.48)2 + .5(1.5)(.4)(6.48)2 = 31.5 + 12.6 = 44.1 J. Similarly, the
cylinder's KEris 29.4 + 14.7 = 44.1 J. Compare these KE's (32.4, 44.1 & 44.1) with
APE =mgAh =1.5(9.8)(-3) = —44.1 Joules. Why does the block have only 32.4 J ?

Even though the block has the largest ve and wins the race, it has the least KE at
the end because sliding friction has wasted 11.7 J of KE: Wgyietion = Mk mgcos6 d =
.20(1.5X(9.8)(cos 36.9°)(3/5in36.9°) =11.7 J. But the friction acting on the cylinder and
sphere is static; instead of wasting KE, this "rolling static friction" just changes it
from KEi¢ranslation t0 KErotation. For example, the sphere's KEpotation 0f 12.6 J is
taken from KEiranslation, decreasing KEtranslation from 44.1 J (wh1ch it would be if
there was no friction to produce rolling) to 31.5 J.

{In Problem 5-##, this "Object Race" is solved using F=ma, 7 =Ia and tvvax.}

SOLUTION 5-F: The first 3 situations are like a car that 1) over-accelerates at the
start of a race (tire rotation is too fast for the car's forward speed, so tires break loose
and squeal), 2) rolls smoothly for a while, and 3) over-brakes after the finish line
(rotation is too slow for the forward speed, so tires skid). { The logical reasons for these
friction directions are discussed in Problems 3-E and 3-25.}

(Too much spin)  (vo-sliprolling)  (nat enough sgin)
IF V< rw 1¢ V=T_UJ If vorw

T = Nex
v v
//////n/ .FR ‘ no "FY“CT]G“ ‘FK el

Now think about what kind of sliding will occur if friction=0 during a downhill or
uphill roll, and what direction fg must be to prevent this "would-be" sliding. Then
compare your answers with the diagrams below. What will each f; do to v and ®?

non- s\\p non-s\i
downhil\ roll uohiy \"o\\

ey [

"Downhill f;" decreases v (because fs & v are in opposite directions) and increases
o (because f; is in the same direction as ®). This is, of course, the same conclusion
that was reached in Solution 5-G's KE analysis. During an uphill roll, f5 acts to
decrease ® and increase v. How can friction increase v? This is discussed [using mg(sin 6 ),
energy conservation logic, ...] in Problem 5-#.

The main theme of Chapter 4A is "Wiotal produces A(KE¢otal)". Wiotal can be split
into Wiranslation [ Wirans = Ftotal d cosg] and Wrotation [Wrotn = Fr As = Fr r A6 = T A6 1.
Similarly, AI(Etotal can be Split into AKEtranslation and Amrotation .
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MANY-SIDED EQUATIONS : As in Section 4.7, every box in the diagram below equals
every other box. The { lines show that equations like "Wiranslation = AKEtranslation”
and "Wrotation = AKErotation” are valid; in Problem 5-##, these equations are used to
explore energy conservation for the sphere of Problem 5-G. Comments: 1) "Frr 46" can
be grouped in two different ways, to get FrAs or 746, 2) Compare the 4 terms (: mvy2, tmv2,...)
in each of the two lowest boxes. Do you see why these two boxes are equal?

Fd c,o'.v¢ = Wtrans Wroth = & s = Fr r 08 = J.. 08
Wirans + Wrga Wrstal
: : I
Wie= OKE Wro = AKE
‘h-E T ro : 2] A( KE wmQ
AhE'ﬁ'ahs + AkEroTh (KE?QTOA‘)-G - (kE‘l’c‘\'o.\\i
(xmG-ymd) + (FTud -4 Twd) (M + 5 TwR)- (Frd+ 3 Twd)

OPTIONAL: If your class studies "rotational power", these formulas will be useful.
AKErans /At = Wirans /At = Pranslation = F v cos@, and
AKErom = Wiotm /At = Promation = Frve = (t/r)r@)=tw.
(Pirans *+ Protn ) At = Pigtal At = Wigtal = every other box in the diagram above.

Part 5: Angular Impulse-Momentum

If both sides of Chapter 4B's " Fext At = (mv)¢— (mv); " are multiplied by r, and
substitutions of Fext =Text/r, m=I/r2 and v=rwo are made, the result is

Fext At = (m v ¥-( m v )
Fet rAt = (m vrk-( m v r)
(Text/T) T At = [(W2)ro)rl— [(Ur2)(ro)r];
T ext At = (1 o - (I ® )

"mvr" is given the name angular momentum, abbreviated "L". L is calculated
like torque (in Chapter 5E), except "mv " is substituted for "F ". Here is a review of
the steps from Chapter 5E, adapted for calculating Li: 1) Draw the object's v-vector.
2) Choose an L-axis. 3) Use the formula L = mvr(sin@) where r is the axis-to-object
distance and 6 is the angle between v and r, or use L = mvr, wherer, is the shortest
distance between the v-extension and L-axis, or use L =Iw because (as derived
above) L=mvr=In. 4)L-direction (or £ sign) is found the same way as t-direction.
5) For a system of several objects, Ltotal = the sum of individual L's.

Internal & external torque are caused by internal & external force, respectively.
Always ask the question from Section 4.8: "Is the cause of a force (and the torque it
produces) within the system or outside the system ?". Some situations with internal
torque are collisions, internal T's or N's or friction, a "within-the-system throw"
(these are all analogies to the internal force situations of Section 4.8), or an ice-skater
who moves her arms from outstretched to close-to-her-body.

CONSERVATION OF ANGULAR MOMENTUM: When Texternal = 0, Li = Ls.
ALMOST-CONSERVATION : If Text # 0, but a very small At causes Text At =0, Lj = L.
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PROBLEM 5-H: Angular Momentum and More

A 100 kg man holding an 8.0 kg box stands .50 m from the outer edge of a motion-
less 500 kg, 3.00 m radius solid cylindrical disk. The disk rotates around a vertical
frictionless axle through its center.

The outer edge of the disk is pushed with a
constant counter-clockwise tangential force of
600N for 4.00 s; find or of the box.

If you have studied "Angular Work-Energy", find
the revolutions made by the disk during this 4 s.

After the 600N force stops (at the end of 4 s), the
man throws the box with speed 12.0 m/s in the .
direction shown at the right, then walks 1.50 m vepoies B e
toward the center of the disk. Find the disk's @ just observer on around.
after the throw, and its o after the walk.

SOLUTION 5-H ,

Let's define box-man-disk as a system. The disk has "X = .5". The system's
initial Itotal 18 Ipox + Iman + Idisk = 8(2.5)2 + 100(2.5)2 + .5(500)(3)2 = 2925 kg m2.

We'll also define 4 "special times": t1 (before the 4s push), tg (after pushing, before
box-throw), t 3 (after throw, before walk), t 4 (after walk).

The 800N push is Fexternal ; it causes AL and AKE during the first 4 s.

Fot ru st = I we = Luy Wro‘\‘a‘\’ioh = DKE vototion

600 (3)(4) = B ~2925(6) Fr o= T wd -k

AWe BE = 4y 600 (3) 00 = (xAAs)aeR - 0
AB = 492 rads $or T8 vey }

i

The box-throw and walk involve only internal forces, so angular momentum
is conserved. After the first 4.00 s, the system's total L (which is
Ldisk + Lman + Lbox) remains the same: Lg =Lg, Lg=Ly4.
To find L-direction (and * sign), use this analogy to t-direction; hold the r-vector down at the
axis and push it with v (not F, as was done for T). vdisk and Vpman Will rotate the r-vector 9,

which I'm defining to be +. But vpox rotates it *, which makes the box's L have a — sign.
A useful shortcut: if the around-the-axis v (or ) is ®, L is +; if it is, L is —.

From before-1 hrow Yo jusT-afterthrow

(Ld-l-m-rb)a = Lé‘\sk% t+ (Lmom);.; + (Lbox\3
(TeysNwg) = Taigk W+ Tman W3 = MV T aimb
(1335)24E) = (2250) Wy + (100)2.5Y Wz~ [3(\:32.5 N
+T195 + 208 = A¥15 wg
25T Y, = Wy

1]

From before-walk to ot Ter-walk
(Ldislt)3 "'(LM\:\\S*’ Eer)a = (Ld}u*(‘.m}ﬂ +,(—\:€rq.
3256(2.57) + 166 (ASTAS5T) = (3356)u, + 1000 Wiy
3.1 |+ m&s/s = w "
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Linear & angular momentum cannot be mixed together. Below, all right-side
angular motion boxes equal each other (as in Section 4.7), but they are not equal to
the left-side linear motion boxes. This is emphasized by the line separating them.

N Use only ( )
Ej RADIANS (v )e (my ‘.Q;
T R — o b {7 e
o ) AU AN
Ee.x\' Aﬂ— Pr - Pi X LU (Twe (Twh
A s Text A
e | i be - b
H q AL ]

"mvr; or Iw" means that you can calculate L using the most convenient formula,
If an object has straight-line motion (like the thrown box), use mvr, [ = mv(r sin)].
If a point-object moves in a circle (like the man), use either mvr, or Iw.

For a "large object” (like the disk) that has I =Xmr2, use Io.

Optional: The vector properties of angular momentum,r F=1,rp =L and t At = AL
are discussed in Section 5.94, using spinning tops and bicycle wheels as examples.

5G: Equilibrium (Torque Statics)

Torque can be used to analyze a situation in which an object remains motionless
even though several forces act on it.

Z

PROBLEM 5-1: Torque Statics. é
In the picture at the right, the 10 kg %
board ( 2 ) is symmetric. Find the rope Z
tension, and the vertical & horizontal '4/,
forces the hinge exerts on the board. “‘“"'E//“%
o

Here is a general strategy for solving torque-statics problems. As you study it, use
Problem 5-I to practice what you're learning.
Learn the torque-calculation methods of Chapter 5E: 1=Frsin® and t=Fr, .

Read the problem, draw a picture, choose an object and draw a force-diagram;
you must draw each force at the place where it is actually applied to the object.

The object remains at rest, so v is always zero and all accelerations are 0: ax = 0,
ay=0,0=0. Fyx=may, Fy=may and t=Io simplify to give Fx =0, Fy=0,and t=0.

Define x & y axes, and substitute all x-forces and y-forces into Fyx =0 and Fy=0.
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Choose a useful t-axis*, and substitute all T's into T =0. *When an object rotates,
the rotation axis (a door's hinge, the center of a wheel,...) is usually the best choice
for a t-axis. But for a static object, you can choose a t-axis to be anywhere, so there
are an infinite number of t-axes and corresponding t-equations. Some axis-choices
are better than others. If a force (or its extension) passes through a t-axis to make
r, =0, the F doesn't produce any 1; the F disappears from the 1=0 equation for that
particular t-axis. If you choose a t-axis wisely, you may eliminate enough F's to get
a l-unknown t-equation; this is often the key to solving a statics problem quickly.

If you can't get a 1-unknown t-equation, substitute into Fx=0 and Fy=0 first;
they're easier than 1=0. Then check for unknowns and choose a t-axis accordingly.
( Problem 5-# shows how to use a "multiple unknown" algebra strategy. )

For any statics-equation®, you can treat an object as if all of its mass is at the
object's center-of-mass. *You cannot do this if an equation contains r2 instead of r.

SOLUTION 5-1
Just follow the steps outlined above, using the board as "object". I've chosen the

hinge as t-axis, because this makes F, and Fy, disappear to give a 1-unknown
equation. Solve-and-use links: solve for T, then use it in the | substitutions.

Draw "10g" at the board's center-of-mass, as if all mass was located there.

To get the 20° angles below and above the board, use two of Section 1.3's "AXYZ"
tools: Y (angles that add up to 90°), and Z (parallel lines cut by a diagonal).

Compare the angles in the drawing and in the equations. Do you see why 40° is
used for Tx and Ty, while 6 is 60° in the "t = Fr sin6 " for rope tension?

For substitution into t=0, I'll be using "Fr sin®" instead of "rF sin6".

? T, .........%TY=TA11(\40°
Z DN
Z
Z
Z
Z
Z
Fv
Fx = meo Fy = m,e(yo
Th =T wai® = O ~Fv + Taimti6 -104404= 0
% 4
Fu - () eces® = O =Fy + (198) aimh0” =430 = 0
Fu = 611 Tewlony +3N = Fy
T‘\'o‘\'q\ = I Féo

0+0 - 10gC1.0)4mT0" +T (12)aim 68 - #09(2.0)2in 76" = O
039 T = +431 + 1137
T = 7938 Neslows
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On the F-diagram, we drew Fy in the | direction. This is opposite the +y direction,
so "—Fy" was substituted into Fy=0. The + sign in "+23 = F" does not mean that F,
points in the +y direction. Instead, it says "Yes, your substitution-decision about the
Fy direction (that it points downward) is correct; F does point downward." ( This is
discussed in "The Meaning of + Signs", Section 3.6.}

I recommend the equation-layout shown above. Put Fx=0 and Fy=0 side by side,
leave room for some algebra-work. 7=0 is usually longer, so put it on a separate line.
{ If there are only a few F's, or if you can write small, put all 3 equations on 1 line. }

Be disciplined when you substitute into the t-equation. For each force on the F-

diagram, there should be a term for the 7 it produces. If you use "t = £ Fr sin6", you
have 4 decisions to make for each F': decide the * sign, the magnitude of F & r*, and
the angle between them. { * As I'm writing, I say to myself "10g at 1.0..., Tat 1.2...".}
Look at the 1-equation above. Do you see the 4 decisions for each non-zero t term?

For some problems, including some in Section 5.91, it is easier touse "t1=+Fr,",
and instead of 4 decisions there are 3: £ sign, F, and r,. ‘

If you want, use other t-equations to check the answers of T =798, Fy, = 611, F, =23 .
If they're correct, all equations should have left-side = right-side. Do they?
For example, if the rope-attachment point is chosen as t-axis,
+23(1.2)sin 70° +611(1.2)sin 20° +10g(.2)sin 70° +0 —40g(.8)sin 70° = 0.
~295.1 +294.7 = 0 ? {This is close enough; round-offs cause some error.}

SA

5B
5B
5B

5B

5B

5C

5C

5D
5D

Chapter 5 Flash-Card Review

At any instant of time, the C & T axes are __
to each other; C points __, and T points __.

ac points __ ( ___to vr ) and causes ___ motion.

If F¢ points __ the center, its +signis __.

If an object changes height (asin ___), use __.

If v¢ gradually !, the object __firstat __.

"centripetal" is a __, not the name fora ___.
Fiscaused by __,butnotby __or__

“Specifically, F¢ can be caused by __.

If an object moves on a non-circular curve, __.

Fgravity magnitude & direction is __ (general)
and __ (near earth’s surface), sog =~ __

Fgravity extends to __, can cause __ of __

A "visual" way to understand a radianis __.

3 kinds of motion variables are __,
2 equation types are __and ___ (units __ ).

perpendicular, toward the circle-center,
along motion-line (out front or rear window)

toward the circle-center, L , curving
toward (+), away from (-)

a "vertical circle”, the T.W.E. (FAx=AKE)
departs from a circular path, the circle-top

direction, new kind of force
real objects, "circular motion", acceleration
T, N, mg or GMm/r2, air-lift, friction, ...

use radius-of-curvature for circle-center & r

GMm/r2 center-to-center attraction
mg "down" toward earth-center ; GMearth /12

outer space, orbiting, planets/moons/satellites

cut r-string, stretch on rim, draw lines toi &

linear, tangential, angular
defining, connecting (must be in radians)
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5D
D

5D
D
D

SE

5E

5F
SF
5F

5F

SF
SF

SF
SF

SF
S5F
SF

5G

All points on a spinning plate have __but _.

A rolling object (radius R) or the rope on a
rotating pulley (radius R) will have __if __ .

If you know __ of __ (2 answers) you can
find the other(s) by using __ and/or __.

For __ motion, __ acceleration is
used in equations. {3 answers}

ar and ac show the rate-of-change of _.
There is really __kind of non-angulara, __.

To get twmad, replace __, even though __.

To find t , draw each Fat __, choose __,
then use a t-formula, either __or __,
whereris__,

andrpis __.

To find the £ sign of  direction, __.
OPTIONAL.: To find 7t vector direction, __ .

For tvvax, use __ units; for other equations, __.
ol =__. Two objecttypesare __ (I=__).

For __ equation, you should know the __ and
what __ to look for, learn links by knowing __,
use __to learn the __ for each variable-letter.

You must know the equations!
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the same o, different v¢ (if r's differ)

Ax=RA6, v=Rw, a=Ra
there is no "slipping"”

1 of (, f, rpm, T); 2 of (vr, 1, W/f/rpm/T)
conversion factors, formulas

linear (a ), constant-speed circular ( ac ),
changing-speed circular ( ac , ar, 0.)

v+ magnitude (for ar) and vr direction (for ac)
just one, a = Av-vector / At

tvax with two.0, they aren't equal

the F-application point, a T-axis

rFsin®, Fry

a vector drawn from 7-axis to F-point

the closest distance from F-extension to T-axis
point, push or pull, decide (usually ¥ is +)
curled r-fingers are rotation, r-thumb is T

consistent, you must use radians
sum of I's, point (mr2), "large" (X mr?)

every, if-then requirements for its use,
choosing-clues, all a-eqns & a-eqns & (etc.)
active review, word(s) & units & "look"

To learn them, study their logical organization

in the Chapter 5 Summary (it's very good) and use active review to learn their
if/then requirement, choice clues, link possibilities and letter meanings.

If a pulley has m#0 and a0 20, _#__.
The "link" between F=ma and t=Iois __.

An object's v is —; f points = if __, «if _.

An object has ___KE ifitis __ after 1 rev.
An object has __KE if itis __ after 1 rev.

To calculate L, __ but replace __.

To determine whether 7 is "external”, ask ___.
Some situations with Tinternal are __ .

Conservation of L occurs if _.
__can be added, but __ cannot be "mixed".

L=__for linear v, rock-on-string, large object.
If an object is static, __, _and _

A force vanishes from a T-equation if __.
Make __ t-decisions for Frsin6, __ for Fry .

T1#2Ts, and T =T1 R)# 2 (=T2R)
a = (ar)im = Trim &
r® > v (over-spin), r® < v (under-spin)

only one kind of, at the same location
both rotnl & transl, at a different location

use t-calculation strategy, F with mv

Is the T-causer a part of the system?
Finternal analogies, ice skater's arm-changes

Text=0; AL =0 if At=0 causes Text At=0
KEqotn & KEirans, linear & angular momentum

mvr;, mvr, or lo, Io

Fx = 0; Fy =0, 1= 0 for every t-axis
F-extension passes thru the T-axis (so T = 0)
4 (+,F,1,5in0), 3 F,r1)
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Chapter 5 Summary

The centripetal (radial) axis points toward the circle's center, fﬁ's
along a radius-line. The tangential axis points along the direction ! \
of motion (straight out the "front windshield" or "rear window"). P
At any instant of time, the centripetal and tangential axis- \/'
directions are perpendicular ( L) to teach other. :
A car's speedometer shows v (for straight-line motion) or vr (if motion is along a
curve). Asis the distance an object actually travels (see picture above).

Centripetal (Radial) Acceleration: At any instant of time, whether vy is constant
or changing, a. is L to v and points toward the circle-center, with magnitude v:2/r.

Cause — Effect: A force "F." causes "m" to move in a circle with acceleration "a.",

VT2

Fo = m S —( by substituting "v; =r®" from 5C }—> F. = mrwn2

F. toward center is +, F, away from center is —; the Fr component doesn't cause a..

"Centripetal” is a direction (like "x" or "y"), not the name for a new kind of force.
F. is caused by real objects; ’ c1rcular motlon "acceleration” don't cause force,

Fgravity = GMm/r2, center-to-center attraction; G = 6.67 x 1011 (in SI units).
Near the earth's surface, Fg,-av]ty = mg, straight down toward earth's center; g =~ G Mearth m/r2.

Feravity extends into "space”; it can cause one object to orbit around another object,

2
%ﬂ. = mZ- %Tzz r3 GM = 13 @2

As = v OO i]
bs . )
A T Vv | Nt = r w -—I— W %ﬁ.—
AVt
= Q O = e = _l}.‘:"’_
BY SRTT T OT BT X X E Y
Angular Velocity Units
If you know 1 of 4 Vi T If you know 1 of 3
(@,f,rpm,T) | (¥r,r,o/ffrpo/T)
you can find the others: ® T you can find the others:
2nrads = 1 rev = 360°, — f/ Vi = TQ
60 seconds = 1 minute, r;|)m vr = 2xr/T

o=2rf;1/f=T, f=1/T.
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FOUR KINDS OF ACCELERATION

: QA E O E < Qe (or OR)
! LINEAR :TANGENTIAL} ANGULAR {CENTRIPETAL

: o, is "REGULAR" .

%r LINEAR MOTION : AcceLERATION: ngl used not used ®)
o i{as in Chaplersa-4): ; :
| CONSTANT-SPEED ! ! G shous The
2| CircuLAr Motion | NoT vsed ; 0 . O ! vae-gf-change
El CHANGING-SPEED ! d i T or Shows Ya'at o shows W : O {Altm-“o“
" N : e TS M : 05 obje€l moves
/|, CIRCULAR MOTION ! not us { rate-of-change | rate-of-change i o\ons‘)ac.urvc
P Fx= mox ! g i :
F= mao EQUATION E F; = m O.: 5 F=mos ™= = mae
: AV A Y : Aw : a
e At : At : Ve r
MAGNITUDE atop At W{
: Or = ¥ x i rw?*
: IF speed T, ouf ‘?ron‘\' wmc\m: o has same Toward cenfer
D\REC.TION P If sPeQAJ,,ouT rear window, ; * sigh 08 Or. of cirele

§ Along direction of maTion.} & fsee *be\ow} (o'n m&h\-l'me.)

i Direction of
What is Ch““ﬁ“ﬁ? Magritude of v H“S“‘ of wr ”“3“ of w Py vecTor

There is one kind of non-angular acceleration: a-vector = A(v-vector)/At. a, a. & ar
are just convenient categories that describe the Av /At for three common situations.
To get the circular-motion atstq] vector, add a.; and ar (which are always L) as vectors

3w

f 'izvoasscr
(Ax)object = (AS)rim = Tui (Ax)blocks = (AX)rope =: (As)rim =
Vobject =* (v Jrim = i Vblocks =  Vrope =* (vt Jrim =
Qobject =" (ar lrim = i @blocks arope = (ar Jrim

* These ='s are true only if the object (or rope) moves across the floor (or pulley) without slipping.

All points on a spinning plate have the same ;
but if two points have different r's, they will (because vr =rw ) have different v;'s.

KINETIC ENERGY (translational & rotational)

w
w=0 : —3 Bﬂ
Ly &) ICL
only KEtran , ) only KErotn , KEtran + KErotn,
$ mv2 3 I w2 tmv2 + §lw2

If object is at same point after 1 rev (like rock-on-string), it has one kind of KE; this can be calculated
as smv2 or :lw2. If object has moved after 1 rev (like a rolling sphere), it has KEgans & KErom , and
if rolling is non-slip so vr =r®, KEotal = tmv2 +:lew2 = tmv2 + X(t mv2),
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Linear, Tangential & Angular Variables,
and CONNECTING EQUATIONS

LINEAR [ T bx \Y o F m
TANGENTIAL [ T As Vo o Fr -
ANGULAR | T ) W ) ~ I
X

BETTRE | — | 2eev 10 | womv [aroro | e B | e

Linear, Tangential and Angular Equations
Linear equations (like F =ma) have "tangential analogies" (Fr=mar).
If connecting equation substitutions are made for each tangential variable (Fr = t/r,
m =1/r2, a; = ra ), every "r" will cancel, as shown in Parts 1, 3 & 4 of Chapter 5F.
The overall result is that linear variables change to tangential and then angular,

even though (as discussed in 5D Part 4) tangential & angular variables are not equal.

LINEAR EQUATIONS TANGENTIAL EQUATIONS
Fyvvax (if o is consTawt) Towxo (1f « is consfont)
Ve=Vi = o we - wi = o T
Ax = Flu+ve) T AB = F (wi w;);\'
Ax = %t +¥oTr AG = T +% T
Ax = %Tf-sot? 6 = weT- % «
Vet - R = QA o B% \.uf-w-,‘=2tdﬁe
Use ChopTer J slralegies. Use anologies of Tvvox slralegies.
F'\'OTO.\ = MAa — 'T'-ro-ro\\ = ]
Dp AL
Fa OF 1 PE- P o [Pt oY |1 o -
= RECYIRICN! Text Ot
i (Iu) m)_(lwom)
LINE AR & ANGULAR MOMENTUM MY Gje \ MV
connst be “mixed!

- - e e .-

. {opTioNAL Y
pemm o JOPTIONARL
Fdep Fr. 28 P (Fvesd + Tw) AT |
B Ax ~ 08 H Protol ot
A e et e o e e e = | o - V4
: : |
W tTronsg + \J\]‘roTn WTaTo.\
{
W= ARE 4y Wro= 8kEve 5 CRE rorat)
OKE4vans +  OAKErsin (KEteta)e - ( KE‘tc‘ro.\)'\
Lmvd- )« (ETud- 3T wd) (% v+ Tw?)- (4 + ¥ Tw)
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tvvax strategies (as in Section 2.21 or Chapter 2's Summary) can be used for towad:

read/think/draw, choose i & f points for a constant-a interval, make a twwa8 table,
look for 3-of-5, choose a 1-out equation, substitute and solve, answer the question.

UNITS: For twwad, just be consistent; use all rads-and-s, or all revs-and-s, or..,
ional-moti ions, use only radians for A8, w and «.

1; MOMENT OF INERTIA_ calculation
For a system of several objects, Iiotal = sum of I's for the individual objects.

I=mr2 for a point-object, I =Xmr2 for a large object (get X-value from a table).
Optional: parallel-axis (1=1I¢m + mh?) & radius of gyration (I = mrg2), Problems 5-## & 5-##.

How to calculate TORQUE, T.

1) Choose object, draw F-diagram with each F acting at F-point (where F is applied).

2) Choose a specific 1-axis (T is always calculated "with respect to" a specific axis).
3) Use either of the t-formulas shown below. {I recommend that you learn both formulas. )

= F si T=1z%xr F
r is a vector from t-axis to F-point To find r,, a) DRAW the F-extensions,
0 is angle between r and F b) find closest approach to t-axis (at 90°);
c) this extension-to-axis distance is r, .
4) To find direction-sign of T, a) POINT pen in r-direction, b) HOLD pen at t-axis,

¢) PUSH/PULL pen with F at F-point, d) DECIDE (usually  is defined to be +).
5) 7Tiotal = sum of individual T's.

ANGULAR MOMENTUM ( L) is calculated almost like t ; just substitute mv for F.
r is vector from object-location to L-axis, r; is shortest shortest distance from v-extension to L-axis.

Linear motion: L = mvr,. Rock-on-string: mvr, or Iw. "I=Xmr2" object: L =10,

Separate © into Tyt and Text; ask "Is the t-causer inside or outside the system?",
Some examples of Tin¢ are "analogies to Finternal', and an ice skater's arm-extension.

CONSERVATION OF ANGULAR MOMENTUM: If Texternal =0, Lj = L¢.
ALMOST-CONSERVATION: If At=0 causes TexternalAt=0, Lj=~Ls.

TORQUE - EQUILIBRIUM_PROBLEMS

If an object is "static” (remaining at rest), it has Fyx=0 and Fy =0 and t=0.

For ©=0, choose t-axis anywhere. (If an F-extension goes through a t-axis (so r, = 0), this F
disappears from "t = 0" for that axis. Try to get a 1-unknown equation, or 2-unknowns/2-equations. }

Each F causes a t; there are 4 t-decisions for t=+*Frsin8, 3for t=+Fr, .





