~13.
Dr. Marquart: There was an article that came out in the Christia n Digest a cd%ple
of years ago about this question of imagination which may elucidate things a little
here. As I remember it, it spoke of the word "imagination" as used in various parts
of the 0ld Testament and New Testament, and although the meaning is not quite what
we call imagination, it refers rather to a kind of thinking which is emotionalized
_in such a way that it would include such things as we commonly call rationalization.
” To use a modern psychological term, an intellectual type of thinking but one which
is so emotionally distorted that it is rather untrustworthy, and I think that in that
- sense it fits in very nicely with what Dr. Barnes just said with regard to imagination.

THE MEANING OF MATHEMATICS

H. Harold Hartaler
Goshen College, Goshen, Ind.

A word of explanation may be in order eoneerning the inclusion of a paper with
the above title on a program of the American Scientific Affiliation. Most of the
papers presented at our previous conventions have been apologetic in character and
contained only a relatively small amount of scientific information. As individual
members of this affilijation we cannot be equally competent in the various areas of
science including mathematics, astronomy, physics, chemistry, biology, sociology,
geology, archaeolegy, anthropology, psychology and philosophy. It seems to me that
we need a series of papers presented at our annual meetings, each of which will
attempt to explain the essential character of that field of science so that those
whose special training does not lie in that area might be aided in their understand-
ing of the problems involved. :

Since mathematics has been called "the queen of the sciences" and also their
handmaiden and since its essential character is so very poorly understood by many,
it seems desirable to delve into the mysteries of this subject. In the first place I(
I would like to point out that mathematics is much more than the art of computation.
This reminds me of the young mathematics student who had recently returned from
Germany after spending three years there earning the dactor's degree. He was greeted
by an old acquaintance in his home town who asked him what he had been doing while
abroad. "Studying mathematics" was the reply. "Studying nothing but mathematics for
three years" extlaimed his friend as he gazed at a brick wall across the street, "why
I suppose you could count the bricks in that wall at a glance." This illustrates a
popular misconception in regard to the nature of mathematics. To be able to compute -~
with ease and to perform a few simple mathematical tricks is often taken to mean
that one is gifted in mathematics. Such, however, is not necessarily true. 1In fact,
some noted mathematicians have been rather slow at numerical computation,

A fair competence in manipulation is admitted to be a necessary prerequisite
to understanding a mathematical argument. But no amount of technical facility will
of itself teach anyone what mathematics is or what proof means; nor will it suggest -
what is probably the most important reason why mathematics is today an even more
vital human need and social necessity than it was in the past. Manipulative skill
may suffice for the average technician in the trades but it is inadequate as an aid
to self-respecting citizenship in even a moderately intelligent' society.

Now just what constitutes the essential character of mathematics? I think that
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character, although not exclusively so, since in the formulation of many £heorems,
we use the inductive approach.

First of all we start with elements, the undefined terms concerning which all
our mathematical reasoning is done, 7Theése elements have nothing whatsoever to do
with the constituents of matter which are studied quite extensively in chemistry and
physics’.‘r In fact, as far as the mathematician is concerned, they have no neeessary

*relation to anything in the world of the senses. They constitute the building blocks,
quite few in number, out of which is built the entire methematical structure. Exam-
ples are number, point, line, and plane., These elements or objects or concepts are
so fundamental in character as to be incapable of definition. In mathematics we
freely admit that there are some things which we cannot define. These are the ele-
ments. This lack of definition for the elements is a most important point of distinc-
tion between mathematics and other fields of knowledge. Most, if not all, definitions
Found in the dictiomary are Gircular ones, That is, they define an object in terms.
of the thing itself. Now, really, a circular definition fnotadefimtionat dl. Rrexample
the definition of the word number as found in Webster's new international unabridged
dictionary: '"The total aggregate or amount of unite (whether of things, persons or.
abstraet units)". Here we find the word number defined in terms of aggregate or
amount of unitse. But what meaning have these terms if not in terms of number?

After we have the elements of the subject, we next have definitions, axioms or
postulates, propositions and theorems. The axioms are pure amsumptions concerning .
the undefined elements, They may have been suggested by experience or they may have )
been chosen on the mere whim of some mathematician interested in seeing what he could
make. In no sense are the postulates or axioms eternal truths or necessary; nor are
they guaranteed by any extra human necessity or supernatural existence. The laying
down of postulates is a free act of human beings. -

The totality of the axioms of any branch of mathematics provides the implicit
definition of all undefined terms in that area. For applications it is important
that the concepts or elements and the axioms or postulates of mathematics correspond
well with physically verifable statements about real tangible objects. The physical
reality behind the concept of point is that of a very small object such as a pencil
dot, while a straight line is an abstraction from a taut thread or of a ray of light.
The properties of these physical points and straight lines are found by experience }
to agree more or less with the formal axioms of geometry. Quite conceivably more
precise experiments might necessitate modification of these axioms if they are ade-
quately to describe physical phenomena. But if the formal axioms did not agree more £/—
or less with the properties of physical objects, then geometry would be of little
interest, Thus there is an authority, other than the human mind, that decides,t
direction of mathematical thought.XCrce zpmilome AAAZ./1405£% @ ma e, of witlctet D
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We usually require that the postulates be simple and not too great in number.
Moreover, the postulates must be consistent, in the sense that no two theorems dedu-
cible from them can be mutually contradictory, and they must be complete, so that
every theorem of the system is deducible from them. For reasons of economy it is
also desirable that the postulates be independent, in the sense that no one of them
is deducible from the others. The question of the completeness and of the consis-
teney ef a set of axioms has been the subject of much controversy. Different philo-
sophical convictions concerning the ultimate roots of human knowledge have led to
apparently irreconcilable views on the foundations of mathematics. If, as in the
Kantian philosophy, mathematical entities are considered to exist in a realm of pure
intuition, independent of definitions and of individual acts of the human mind, then
of course there can be no contradictions, since mathematical facts are objectively
true statements describing relations considered as real in the realm of pure intui-
tion. From this intuitionist point of view there is no problem of consistency.
Unfortwmately, it has turned out that the intuitionist attitude, if applied without
compromise, would exclude a large and important part of mathematics and would hope-
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lessly complicate thc rest, Radical intuitionists deny a legitimate place in mathe-
matics to the number continuum. They completely reject all non-constructive proofs,
and admit only the denumerably infinite as a legitimate child of intuition.

Perhaps we should add a word concerning the concept of the denumerably infinite.
This brings in the added concept of one-to-one correspondence. Most of us have made
use of this latter concept from our earliest attempts at counting material objects.
As children many of us started to count by the use of our fingers. In fact, our word
digit comes from the Iatin, meaning finger. When you say that you have flve objectg
and hold up five fingers to show the number, you are-making use of the principle of
- one-to-one correspondence, which principle is very important in the consideration of
infinite classes. In using this principle it is necessary to have two sets or classes
of objects and then to add that if for every object in the first set there corresponds
but one object in the second and conversely that for every object in the second there
corresponds but one object in the first, then the number of objectsin the two sets is
the same, Now when we speak of the denumerably infinite we mean that we have a set

vhich can be ut into one-to-one correspondence with the set of the natural numbers:
1,2,3,&,... This set of the natural numbers is infinite, which simply means that if

you name any number N, as large as you ploasb, then there are “still numbers in theset.

Quite different is the view taken by the formalists. They do not attribute an
intuitive reality to mathematical objects, nor do they claim that axioms express
obvious truths concerning the realities of pure intuition, their concern is only with
the formal logical procedurc of reasoning on the basis of postulates. This attitude
has a definite advantage over intuitionism, since it grants to mathematics all the
freedom necessary for theory and applications. But it imposes on the formalist the
necessity of proving that his axioms, now appearing as arbitrary creations of the
human mind, cannot possibly lead to a contradiction. Great efforts have been made
during the last twenty five years to find such consistency proofs, at least for the
axioms of arithmetic and algebra and for the concept of the number continuum. The
results are highly significant, but success is still far off., Indeed, recent results.
indicate that such efforts cannot be completely successful, in the sense that proofs
for consistency and completeness are not possible within strlctly closed systems of
thought. Remarkably enough, all these arguments on the foundations of mathematics
proceed by methods that in themselves are thoroughly constructive and directed by
intuitive patterns.

Iet us consider a case where mathematical reasoning of the purely formalistic
type has led to a contradiction, This involves the use of the concept of set without
any restrictions being put upon it. This paradax, first shown by Bertrand Russell
is as follows: Most sets do not contain themselves as elements. For example, the
set A of all integers contains as elements only integers; A being itself not an
integer but a set of integers, does not contain itself as an element., Such a set we
may call ordinary. There may possibly be sets which do contain themselves as elements;
for example, the set 8 defined as follows: "S contains as elements all sets definable
by an English phrase of less than twenty words" could be considered to contain itself
as an element. Such sets we might call extraordinary sets. However most sets will
be ordinary, and we may exclule the erratic behavior of extraordinary sets by confin-
ing our attention to the set of all ordinarv sets. Call this set C. Each element of
the set C is itself a set; in fact, an ordinary set. The question now arises, is C
itself an ordinary set or an extraordinary set? It must be one or the other. If C
is ordinary, it contains itself as an element, since C is defined as containing all
ordinary sets, This being so, C must be extraordinary, since the extraordinary sets
are those containing themselves as members. This is a contradiction. Hence C must
be extraordinary. But then C contains as a member an extraordinary set (namely C
itself), which contradicts the definition whercby C was to contain ordinary sets only.
Thus in either case we are led to a contradiction. What shall we do with the set C?

I leave it to you to decide the matter.
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let us suppose that we have agreed upon some set of postulates or axioms for
the undefined elements. One postulate for our points and lines might be, "two points
determine a line," another, "iwo lines determine a point." The latter, by the way,
would not usually be admitted in High School geometry, for in that subject are the
sxceptions introduced by parallels which, by definitien, are lines having no peoint
in common. But if we introduce an ideal point st infinity, all a matter of words
without any clutter of mysticism, the pestulate becomes intelligible without any
excéptions.

Thus far we have the undefined elements and postulates about them. To the pos-
tulates we now apply common legic, or the laws of thought, and see what the postulates
imply. The three so-called laws of thought of Aristotle are: (1) A is A (the law
of identity), (2) nothing is both A and net-A (the law of excluded middle), (3)
everything is either A or not A (the law of contradiction). These postulates of A
reasoning were once thought to be superhuman necessities and not, as they are regard-
ed today, mere assumptions which human beings have made and agreed to aecept. So
let us refer to Aristotle's classical laws as the postulates of deduetive reasoning.
Daduction proceeds by an application of these postulates to those of the system, it
may be geometry or algebra, which may be under investigation.

It i3 possible to make different kinds of assertions about the undefined ele-
ments, The most important of them are the propositions. A proposition is a slate-
ment which is either true or false, A true proposition is sometimes called a theorem.
If true, we try to prove propositions by daductive reasoning., If false, an attempted
deductive proof will sometimes reveal the falsity by the indirect method. Proof
consists in seeing what the postulates of the system imply. Thus if P and Q are pro-
positions and if Q follews from P by the postulates of deductive reasoning; and if
further it is known or assumed that P is true, then Q is true, In particular, if P
is one of our postulates which we have assumed at the beginning to be a true proposi-
tion, Q is true. But if it is not known whether Q is true, we may tentatively assume
that it is false., If from this assumption we can deduce that Q is also true, we have
a conflict with the postulate of excluded middle. . But we agreed to abide by the pos-
tulates of deductive reasoning. To avoid the conflict we say that Q is not false,
which we tentatively assumed; namely, Q is true, which we wished to prove.

The whole game is exceedingly simple. There are but two rules., First state
all the postulates and second see that no other postulate slips into a chain of de:n
ductive reasoning. In geometry, for example, it locks as if a straight line which
cuts one side of a triangle at a point other than a vertex must also cut another side.
This is the sort of assumption which Euclid or some of his modern imitators might
easily make, If it cannot be deduced from the remaining postulates it should be put
in plain view with them as another postulate.

From the foregoing sketch of the nature of a mathematical system emerges the
distinguishing feature of any such system, which is paradexically stated in Bertrand
Russell‘s epigram, "Mathematics is the science in which we never know what we are
talking about nor whether what we say is true." The postulates from which everything
statts are assumed to be true; to ask whether they are really true is to ask a ques-
tion which is wholly irrelevent to the mathematics of the situation, The deductions
from the postulates have the same truth value as the postulates themselves.

Although Russell!s remark may tend to overemphasize the view of the older
British school that mathematics is identical with logic; a view which, outside of
CGreat Britain, is now generally regarded as untenable; it does call attention to a
distinction between pure mathematics and applied mathematics. To see this, consgider
the statement often seen in elementary texts that the a,b,c,s.s..X,¥,2 of algebra
represent numbers. Rather it should be stated that the letters are mere undefined
marks or elements about which certain postulates are made, The very point of elemen-
tary algebra is simply that it is abstract, that is, devoid of any meaning beyond



the formal consequences of the postulates laid down for the marks. Some of the elizen
tary algebra is true when interpreted in terms of rational numbers; some of it ig -
false for thess same numbers; for example, the statement (vhich might be taken as a
postulate in a first course) that every equation has a root. But we miss the whole
point of algebra if we insist on any particular interpretation, Algebra stands on
ite own feet as a hypothetico-deductive system, An interpretation of the abstract
system 1s an application.

To illustrate what has been said about mathematical systems let us glance at an
clegent set of seven postulates for common algebra, from E.V. Huntington (Transactiors
of the American Mathematical Society, vol. 4, 1903, pp. 31-37). The system defined
by these postulates is usaully called a field, and is idert ical, abstractly, with
common, rationezl algebra. The fundamental concept involved is that of a class in
vhich two rules of combination (or operations), denoted by § b and a © b are uniquely
known elements of the class. This is sometimes expressed as "the class is closed
under operations §, ©." Neither a 5 b nor a ® b belong to the class unless so stated
explicitely. These remarks are merely by way of introduction; the postulates follow.

Postulate Al. If a, b and bf a belong to the class, thena fb = b § a.

Postulate A2. Ifa, b, c,afb,b@fc,ondag (bg@c)belong to the class, then
(afv)fec=apd(dpe).

Postulate A3. TFor every two elements a and b (a =boraghb), there is on element x
such as 2 § x = b,

Postulate M1. If a, b and b 0 a belong to the class, thena @b -~ b ® a.

Postulate M2, If a, b, ¢, a®b, bO®cand a® (boc) belong to the class, then
(a0b)Oc=a0(boc).

Postulate M3, For every two elements a, b (azbora é b), provided a ﬁ & z a and
b b £ b, there 1s an element y such thet a © y = b,

Postulate £¥p If a, b, c, b B c, a ©b, a © c and,(a © b). # (2 © ¢c) belong to the
class, then a © (b fc) = (a0b ) p (2 ©¢).

The unusual #, © instead of the familiar #, x are used to prevent eny possible
misconception that we are talking about nunbers as in arithmetic. We are not; the marks
or undcfined elements a, b, ¢ ... are marks and nothing more, and the seven postulates
state everything that we are assuming sbout these marks and $, ©. It is easy to see,
as already suggested, that the postulates define common school algebra (including the
ban against attempting to divide by zero) up to the point where radicals are intro-
duced. Perhaps the complete freedom, the arbitrariness of what we are doing will be
' more obvious when we realize that the seven postulates are independent of one ancther,
That is, it is possible to exhibit a system which does not satisfy any particular one of
of the sven postulaks, but which does satisfy the remnining six. TYou may easily verify
that the set of all positive rational nurbers with a § b and a ® b now defined to be
b and ab respectively, that 1is, a ¢ b equals b and a © b equals a, b, satisfies all the
postulates except Al, In the same way, a system satisfying all except M1 ig the system
of all integral numbers with o #b -a fband 2 O b = b, A systen which satisfies
all integral nurbers with a b =a fband a ©b = a £ b, Perhaps you are getting
bored with this discussion so I shall pass on to two very fire cases of mathematical

reasoning which more nearly approach everyday experience.

The first case is that of the proof of the theorem which states that the nurber

of prime numbers is infinite. As you will recall, a prime nunber is one divisible only
by itself and unity. By the number of such nurbers being infinite is meant that if one
attempts to name any very large nurber as representing all Yhe primes, that there ar§ sti
nore primes to be,found., The prooof is as follows. Let us assunme that a largest prime
mumber exists. C 11 it P. Now let us form a nurber N as equal to the product of all the
primes from the first one which is two to the last one which we have assumed to be P and
then let us add one to this product, Therefore N z (2.3.5.TceeeeceessssssP) £ 1. Now
the question is whether this nurber is prime nurbers starting with two and ending with

P. Hence we see that this number,
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is not divisible by any number other than itself and unity. Therefore it is prime
and surely larger than P which we had assumed to be the largest prime. Hence we
have & contradiction and we conclude that there does not exist a largest prime =
number and therefore the number of prime numbers is infinite.

The next case we wish to prove is that the square root of the number two is
irrational, that is, it is a real number which is not the quotient of two integers.
To prove this let us assume that the square root of two is rational and denote it -
by the ratio p/q, where p and q have no common divisor, that is, they have been
reducgd to lowgst terms. Now square both sides of the equality and we have
2 = p°/q% or p* = 2q%, Here we have applied the axiomzthat when equals are multi=
plied by equals the results are equal, If, however, p~ = 2q2, then p“ is even and
hence p is even since only even numbers when squared result in even numbersé If g
is even we can express it in the form p =!2n, From this equation we have pc = ln<,
again by the application of the axiom that when equals are multiplied by equals the
results are equal, Now applying the_axiom_that things equal to the same thing are
equal to each other we have 2q2 = In® or q% = 2n2, This latter equation states
that g© is even and hence g is even. This is a contradiction with out previous
statement that p and q have no common factor since, if they are both even, they ..
have the common factor two., Since our assumption that the square root of two was:
rational has led us to a contradiction, we conclude that the square root of two ig
irrational and the proof is complete, 1In both of these cases we have used the
method of proof known as reductio-ad-absurdum.

We come now to the question of the application of mathematics to the physical
world and to all of God's creation. We have emphasized the fact that pure mathema-
tics is an invention of the human mind. The more nearly that the elements and the
postulates of the subject correspond with what we consider as physical realities, -
the more closely will the results correspond and can be used to predict the manner
in which physical phenomena will perform. Hence as was stated in the beginning of
this paper, mathematics becomes the handmaiden or servant of the sciences. But
just to say that something has been proved mathematically, does not insure that the
results will correspond with physical phenomena. For example, it was proved a num-
ber of years ago that it was impossible for a heavier-than-air crafi to fly through
the air. This is no discredit to mathematics, but rather it serves to warn us that
we need to be very careful in the applications of mathematics. Since all sciences
are conlinually making more and more use of mathematical methods, we need to keep’
constantly on our guard that the results obtained correspond as closely as possible
with physical phenomena.

Finally I would like to say a word concerning the relationship existing
between mathematics and the Christian idea of CGod. Since I believe with Professor
Jaarsma in his paper entitled, "Christian Theism and the Empirical Sciences" that
"the God of Christianity as the Creator is the unconditioned Conditioner of all
things, including the very facts and conclusions of science," I feel that even the
thoughts of mathematicians have their ultimate source in God. However to say, as
some have said, "that the Great Architect of the Universe now begins to appear as
a pure mathematician," appears to me to belittle the idea of God. The pure mathe-
matician is just a puny little man with a quite finite mind doing a small bit of °
purely human reasoning. If some of this reasoning does seem to aid us in delving-
into the mysteries of God's création, we should give more glory to His name for
allowing us this privilege. But to put the infinite God, creator and sustainer of
the universe, as well as savior of our souls, into this category seems to me to be
quite a serious blunder. May we then, as Christian men of sicnece, make more use
of the mathematical method in science, since it has proved so fruitful in leading
us into a deeper understanding of God's creation. ‘
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DISCUSSION OF DR. HARTZIER'S PAPER

Decan Miller: Thank you again, Dr, Hartzler. Now who has the questions written -
down on:fEe back of the envelop for this one? I dare you to ask him.

Dr, Bender: Maybe these postulates are purely arbitrarily chosen, but I think the
fact reamins that Euclid's postulates are not arbitrarily chosen.

Dr. Hartzler: I don't know how he chose them, yet I think they are chosen in such
a way to agree with the space relationships that we know of, so that the results

of the Euclidian geometry and the reasons for the Euclidian geometry are usable,
and the engineer can use them. ILet!s put it this way, is it correct to say that
the postulates of the particular mathematical systems that we ordinarily use in
applied mathematics, such as geometry and the number system---these postulates for
these systems have been arrived at inductively by determining what postulates would
be needed in the system which we are familiar with?

For instance, in the number system, we learn that A plus B equals B plus A
by inductive reasoning. We try it by using several sets of numbers and finally by
inductive reasoning we arrive at a generalization, at that conclusion regarding A
plus B we may use it as a postulate in that system; and when we have our postulates
chosen in that way, then we have the application that we want to use in applied
mathematics,



