SANTA CLAUS: AN ENGINEER'S PERSPECTIVE

From: Preston Garrison <garrisonp@uthscsa.edu>
Date: Thu Dec 23 2004 - 15:17:51 EST

SANTA CLAUS: AN ENGINEER'S PERSPECTIVE

1) There are approximately two billion children (persons under 18) in
the world, however since Santa does not visit children of Muslim,
Hindu, Jewish or Buddhist religions, this reduces the workload for
Christmas night to 15% of the total, or 378 million (according to the
population reference bureau). At an average (census) rate of 3.5
children per household, that comes to 108 million homes, presuming
that there is at least one good child in each.

2) Santa has 31 hours of Christmas to work with, thanks to the
different time zones and the rotation of the earth, assuming he
travels east to west(which seems logical). This works out to 967.7
visits per second. This is to say, that for every Christian household
with a good child, Santa has around 1/1000 of a second to park the
sleigh, hop out, jump down the chimney, fill the stockings,
distribute the remaining presents under the tree, eat whatever snacks
have been left for him, get back up the chimney, jump into the sleigh
and get on to the next house. Assuming that each of these 108 million
stops is evenly distributed around the earth (which of course, we
know to be false, but will accept for the purpose of our
calculations). We are talking about 1.25 Km per household, a total of
120.8 million Km, not counting bathroom stops or breaks. This means
Santa's sleigh is moving at 1040 Km per second........3,000 times the
speed of sound. For purposes of comparison, the fastest man-made
vehicle, the Ulysses space probe, moves at a poky 43.8 Km per second,
and a conventional reindeer can run (at best) 25 Km per hour.

3) The pay load of the sleigh adds another interesting element.
Assuming that each child gets nothing more than a medium Lego set
(two pounds), the sleigh is carrying over 500 thousand tons, not
counting Santa himself. On land, a conventional reindeer can pull no
more than 300 pounds, even granting that the "flying" reindeer could
pull ten times the normal amount, the job can't be done with eight or
even nine of them......Santa would need 360,000 of them. This
increases the payload, not counting the weight of the sleigh, another
54,000 tons, or roughly seven times the weight of the Queen Elizabeth
(the ship, not the monarch).

4) 600,000 tons traveling at 1040 Km per second creates enormous air
resistance....this would heat up the lead reindeer in the same
fashion as a space shuttle re-entering the earth's atmosphere. The
lead pair of reindeer would absorb 14.3 quintillion joules of energy
per second each.

In short, they would burst into flames almost instantaneously,
exposing the reindeer behind them and creating deafening sonic booms
in their wake. The entire reindeer team would be vaporised within
4.26 thousandths of a second, or right about the time Santa reached
the fifth house on his trip. Not that it matters, however, since
Santa, as a result of accelerating from a dead stop to 1040 k p s in
.001 seconds, would be subjected to centrifugal forces of 17,500 G's.
A 250 pound Santa (which seems ludicrously slim) would be pinned to
the back of the sleigh by 4,315,015 pounds of force, instantly
crushing his bones and organs and reducing him to a quivering blob of
pink goo.

5) Therefore, if Santa did exist, he's dead now.
Received on Thu Dec 23 15:19:22 2004

This archive was generated by hypermail 2.1.8 : Thu Dec 23 2004 - 15:19:22 EST