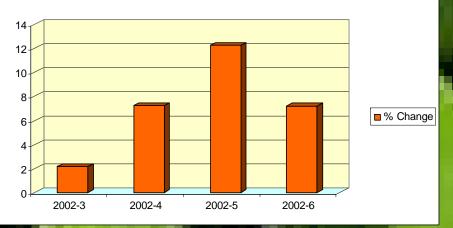

The First Steps to Sustainability: Characterizing Plant Communities, Assessing CO2 Sequestration Rates, and Building a Model for Future Sustainability Projection


> By Christine Prins Calvin College August 2, 2008

Some Results from Dr. Piers... April 20, 2007

Carbon Dioxide Emissions from Energy Use

Carbon Dioxide Emissions (tonnes)

% Change on CO2 Emissions (rel 2002)

Our Experiment

• Objective:

- Estimate amount of CO₂ Campus green space sequesters annually
- Gather useful information for future green space planning
- Compare our resulting estimate to Dr. Piers' estimated CO₂ output to move to a "carbon neutral" campus
- Use the data gathered to generate a model for future estimations

Our Experiment

• Hypothesis:

- CO_2 uptake rates will be approximately 30% of the estimated CO_2 output.
- Based on the amount of green space comprising the campus area

The Design

Testing Level Specifications
 Plant Communities
 Representative Plants
 Replicates

Characterized by:
Sort of vegetation present
Canopy Cover
Amount of moisture available
Size of vegetation
Amount landscaping / lawn care

1. Maintained Lawn:

Fertilized and irrigated, mostly receive full sun with some shade cover, cut and manicured. Includes formal landscaping.

Open Prairie Grassland

Direct sunlight, weeds, grasses and wildflowers. Appears to be first community after a major disturbance.

3. Secondary Grassland

Intermediate between open prairie and forest edge. Has shrub and small tree cover. Receives mostly direct sunlight.

Forest Edge

Dense forest edge receiving direct sunlight on one side. Asymmetric tree cover, quite dense.

5. Early Successional Forest

Young forest, less organized and more dense than mature forests. Significant ground cover 6. Mature Forest

> Older, more developed trees, less ground cover. Larger, more diverse trees and more organization from canopy down.

The Design: Representative Plants

Chosen within the selected communities
 Most abundant plants
 In every community

The Design: Representative Plants

• Maintained Lawn: - Poa pratensis (Kentucky bluegrass) • Open Prairie Grassland: - Solidago Canadensis(Canadian goldenrod) - Fragaria virginiana (Wild strawberry) Secondary Grassland - Cornus serica (Red-osier dogwood) - Crataegus mollis (Downy hawthorne)

The Design: Representative Plants

- Forest Edge:
 - Rhamus cathartica (Common buckthorn)
 - Cornus racemosa (Gray dogwood)
- Early Successional Forest:
 - Acer saccharum (Sugar maple)
 - Fraxinus americana (White ash)
- Mature Forest:
 - Fagus grandifolia (American beech)
 - Quercus alba (White oak)

The Design: Replicates

We chose 10 replicates for each representative species randomly around the campus

The Implementation

Series of Experiments

- Light and soil data
- Initial testing of replicates
- Light level experiment
- LAI collection
- CO₂ data collection with light levels
- Creating Light use efficiency curves
- Area estimation

LAI Photos

The Implementation

Series of Experiments

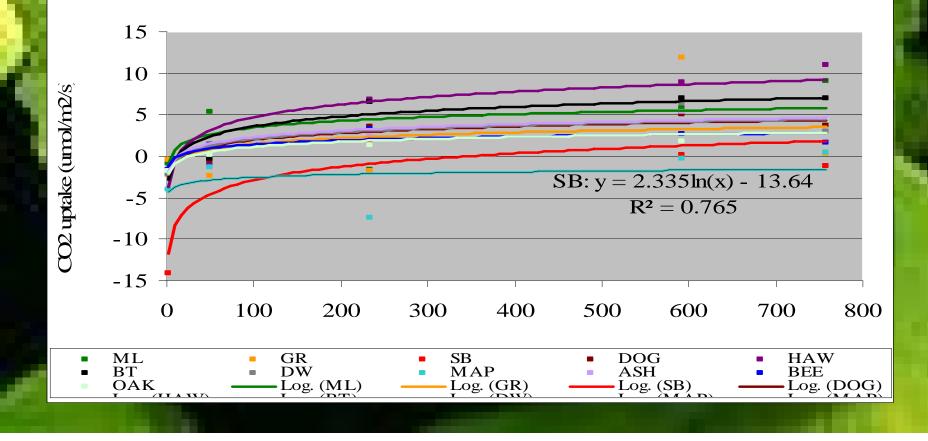
- Light and soil data
- Initial testing of replicates
- Light level experiment
- LAI collection
- $-CO_2$ data collection with light levels
- Creating Light use efficiency curves
- Area estimation

Plant Communities of Calvin College

The Results

Community Comparison

SOURCE	DF	SS	MS	F	Р	
REPLICATE	(A) 9	3105.43	345.048	3 2	2.18 0.0	0219
JULIAN (B)	4 3	111.60	777.900	4.9	3 0.000)7
COMMUNITY	(C) 5	15712.7	7 3142.8	54	19.90 (0.0000
A*B	36 823	39.57 2	28.877	1.45	0.0477	
B*C	20 322	24.20 1	61.210	1.02	0.4354	
RESIDUAL	475	75022.7	157.943	3		
TOTAL	549	108416				
100						


The Results

Species Comparison

SOURCE	DF	SS	MS	F	Р	
				-		
REPLICATE	`	2846.6	64 316.29	94 2.	04 0.0	0335
JULIAN (B)	4 2	984.51	746.128	4.81	0.000)8
SPECIES (C)) 10	17624.	3 1762.4	3 11.	.37 0.0	0000
A*B	36 75	52.94	209.804	1.35 (0.0872	
B*C	40 35	28.92	88.2229	0.57 (0.9848	
A*B*C	450 6	9733.8	154.964			
TOTAL	549	104271				
	1000			1000		100

The Results: Light Use Efficiency Curves

CO₂ Uptake as a Function of Light Level

Model Building

- Putting it all together:
 - Light Intensity Data
 - Data inputted to LUE curves at defined light percentages
 - Adjusted for LAI
 - Summed and adjusted for units
 - Proportioned out according to canopy make-up
 - Multiplied by the area

The Total is.....

- For the year of 2006 (the available light data)
- From Julian day 60 to 288

51.34771293 metric tons CO₂

Conclusions

- There are better and worse plant communities in terms of CO₂ Sequestration
- There are better and worse plants in terms of CO₂ Sequestration
- We have a long way to go to catch up with CO₂ emissions
- A model can be built to estimate the amount of CO₂ Sequestration at an annual basis.

Further Applications...

- Green Space Planning
- More plants studied and incorporated
- More data added to LUE curves
- Ongoing light data collection on campus

Green Space Planning

100% Buckthorn in the Edge

- Common Buckthorn is a nonnative invasive species
- It is out-competing similar plants which are natural to the area.
- Without control, we will lose the other similar species completely.
- In this scenario, we adjusted the proportions of representative plants.
 - 50:50 mix to a 100% Buckthorn and 0% Gray Dogwood.

	Amount of Carbon Sequestered per Year (Metric Tons)
50:50 Mix of Dogwood and Buckthorn	51.34771293
100% Buckthorn Difference	53.23510423 + 1.8873913

This Scenario would give an increased amount of Carbon Sequestered per year.

100% Gray Dogwood in the Edge

- Gray Dogwood is a species that competes with Buckthorn
 If all the Buckthorn were to be
- removed as a restoration project, Dogwood would be the entirety of the Edge
- Part of this restoration project has begun
- In this scenario, we adjusted the proportions similar to the last scenario
- 50:50 mix to a 100% Gray Dogwood and a 0% Buckthorn

	Amount of Carbon Sequestered per Year (Metric Tons)
50:50 Mix of Dogwood and Buckthorn	51.34771293
100% Dogwood	49.46032164
Difference	-1.8873913

Though this scenario would reinstate biodiversity, Carbon uptake rate would be diminished.

Open Prairie Grassland Instead of Maintained Lawn

- A Large Area of the Campus is made up of Maintained lawn
- Maintained lawn is expensive to keep up
- It requires constant mowing, watering, and fertilizing
- Some argue that heavily maintained lawns are not a wise use of water, minerals, or money.
- To model this scenario, we have replaced the area represented by maintained lawn with the amount of carbon fixed for the open prairie grassland.

Difference	-0.15877971
With Prairie Replacing Maintained Lawn	51.18893322
With Maintained Lawn	51.34771293
	Amount of Carbon Sequestered per Year (Metric Tons)

This scenario suggests that the area occupied by maintained lawn is more effective at Carbon sequestration than the prairie grassland would be in that space.

Special Thanks To....

- Professor David Dornbos, Jr.
- Sara Vanden Branden
- Dr. Kenneth Piers
- Dean Gunnink, Calvin Physical Plant
- Mr. Jack Kuiper
- Calvin College

Any Questions?