

Anne Carpenter

BROAD IMAGING PLATFORM at Harvard and MIT 6.9994 83.333 14.113 1.5567

0.0954

0 5552

...

Images contain a wealth of information

Case study: Tuberculosis

Estimated TB incidence rates, by country, 2006

9.2 million new cases of tuberculosis in 2006

1.7 million deaths in 2006

WHO Report, Global Tuberculosis Control 2008 3

Traditional approach to find antibiotics

Put bacteria in individual wells of multi-well plates

Alternate approach to find antibiotics (effective but non-ideal)

Search for tuberculosis treatments

Without drug

With drug

blue = human cells green = tuberculosis bacteria

Collaboration with Sarah Stanley in Deb Hung's lab, Broad/MGH

Search for tuberculosis treatments

Put bacteria and cells in individual wells of multi-well plates

Automated image analysis

Find human cells

Find tuberculosis _____ Count the number of bacteria per cell

Automated image analysis

Find

cells

Find bacteria

Count the number of bacteria per cell

Martha Vokes Image Assay Developer

www.cellprofiler.org

Figure 5: IdentifyPrimAutomatic Display, cycle #3

File Edit View Insert Tools Desktor Window Help CellProfiler Image To-

00

CellProfiler in action

Ray Jones Comput'l **Biologist**

Abnormal cell division

blue = DNA

red = actin

Riki Eggert's lab at Harvard Medical School (Adam Castoreno, postdoc), ICCB

Cell growth

blue = DNA green = p-S6 red = actin

David Sabatini's lab at the Whitehead Institute for Biomedical Research (Jason Moffat, postdoc) & The RNAi platform/TRC at the Broad Institute (Dave Root, et al.)

Polyploidization of megakaryocytes (Acute megakaryocytic leukemia - AMKL)

John Crispino's lab at Northwestern University (Jeremy Wen) & The Chemical Biology Platform at the Broad Institute

DNA stain

DNA damage response (cancer radiation treatment)

Mike Yaffe's lab at MIT's Center for Cancer Research (Scott Floyd & Michael Pacold, postdocs) & The RNAi platform/TRC at the Broad Institute

CellProfiler around the world

Cour	ntry/Territory	<u>Visits</u>	
1.	United States	1,072	
2.	Germany	213	
3.	United Kingdom	180	
4.	Canada	106	
5.	France	83	503 cities
6.	Australia	76	
7.	Switzerland	68	
8.	Netherlands	67	
9.	Italy	52	
10.	Singapore	34	13

Image analysis can yield biological knowledge

Collaboration with Novartis

Yeast patch growth:

Goal: identify chemicals or genetic knockouts

that enhance/ suppress growth of a yeast strain

Collaboration with Leah Cowen, Lindquist lab, Whitehead Institute: Eukaryotic Cell, 2006

Yeast colony size:

Goal: to understand pathways leading to drug-resistant yeast

Iterative machine learning

System presents ~500 cells to biologists for scoring

System defines rule based on cytoprofile of scored cells

Based on: - Boosting Image Retrieval (Tieu & Viola, 2000) - GentleBoosting classifier (Friedman, et al. 1998)

Automatically scoring complex phenotypes

CellVisualizer - 2006_06_14_NIRHT

Makes use of:

~50 features per cell, chosen from ~500
Features are weighted, no hard thresholds

• Automatic machine learning

• Biological expertise during training phase

 $\Theta \Theta \Theta$

File Plot Classify Show Info Window

Glioblastoma proliferation & differentiation

Neurospheres

Adherent

blue = Hoechstgreen = Tubulin

Abnormal cell division

Normal mitosis

Tim Mitchison's lab at Harvard Medical School (Tiao Xie, postdoc; Melody Tsui), ICCB

Abnormal mitosis

DNA stain

Leukemia stem cells

Cobblestones

Differentiated hematopoietic cells

Gary Gilliland's lab at the Brigham and Women's Hospital and Harvard Medical School(Kimberly Hartwell & Peter Miller), Stuart Schreiber's lab at the Broad Institute (Alison Stewart, Shrikanta Chattopadhyay, et al.), and David Scadden's lab at Massachusetts General Hospital (Siddhartha Mukherjee) & Broad Chemical Biology Platform

GFP

+ Growth factor

Eric Lander's lab at the Broad Institute (Piyush Gupta, postdoc) & The RNAi platform/TRC at the Broad Institute

Beyond simple cells...

Neuron assays, Haggarty/Stanley Ctr, Sabatini, Gertler labs

Zebrafish speckles, Peterson & Lees labs

Yeast progeny tracking, Weizt & Samadani labs Adjacent Image, ciycle # 2 Tracked Objects 50 100 ☑ ✓ 150 \checkmark 200 250 300 100 120 140 10 20 30 20 40 60 80

Alternate approach to find antibiotics

Put bacteria and worms in individual wells of multi-well plates

Add 53,000 test chemicals, each chemical in a different worm

Automated microscope

\$3,000+ images

Search for E. faecalis treatments

Looking for chemical compounds that rescue C. elegans from death by E. faecalis infection

Brightfield

IMAGING

PLATFORM

Image processing result: Live/Dead

Fred Ausubel Terry Moy

Fat accumulation (Nile Red)

Brightfield

Nile Red

Brightfield + Nile Red

Gary Ruvkun Eyleen O'Rourke 21

Gratitude

IMAGING

BROAD

Vebjørn Ljoså David Logan Kate Madden Björn Nilsson Martha Vokes

free, at www.cellprofiler.org

Contact: anne@broad.mit.edu

Many thanks to our many biology collaborators who provide images, and to Polina Golland, our computer science collaborator at MIT's Computer Science/Artificial Intelligence Laboratory (CSAIL)

This work has been supported by:

- The Broad Institute of Harvard and MIT
- Society for Biomolecular Screening Small Grant Award
- •L'Oreal for Women in Science fellowship
- •DOD Tuberous Sclerosis Complex Grant
- •Novartis fellowship from the Life Sciences Research Foundation
- Merck/MIT Computational & Systems Biology postdoc fellowship
- •MIT EECS/Whitehead/Broad Training Program in Computational Biology

S.D.G.