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Isotopes of CarbonIsotopes of Carbon
12C: “Normal” carbon (6 protons, 6 neutrons)
13C: Stable, about 1.1% of natural carbon (6 
protons, 7 neutrons)
14C: Unstable “radiocarbon”, about 10-12 of 
modern carbon (6 protons, 8 neutrons)

Decays to 14N by beta decay (electron emission)
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6
14C→ 7

14N + β− + ν e
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Decay is random, with fixed probability 
independent of time, environment, etc.
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dN
N

dt
=

dN
dt

N
= −λ

Nt = N0e
−λt

t1 2 =
ln2
λ

≈ 5730 years (5568 Libby value)

Pdecay = λ
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(after Taylor 1987 fig. 1.1)

7
14N + n→ 6

14C + p



Principle of 14C DatingPrinciple of 14C Dating

Living (“modern”) organisms in equilibrium with 
atmosphere (14C/12C about 10-12)
Current radiocarbon content is measured 
(typically expressed as Fraction or % Modern)
Decay equation gives time of organism death

“Radiocarbon age” is generally expressed in 
years BP (“before present”)
“modern” = “present” = 1950 AD; based on NIST 
Oxalic Acid 1 standard, or secondary IAEA standards
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Mass FractionationMass Fractionation

Chemical and biological processes (e.g. 
diffusion) affect ratio due to 14C/12C mass 
difference
Fractionation can be characterized and 
corrected based on measured δ13C

CO2 in air:  δ13C ~ -8 ‰
C in tree: δ13C ~ -28 ‰

“modern” or “present” is further defined as 
having δ13C = -25 ‰; 14C measurements are 
corrected to this value
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A “Second Radiocarbon Revolution”
(R.E. Taylor)
Tree Rings or Lake Varves are counted 
to give give independent date
Allows correction for and 
characterization of atmospheric 
variations in radiocarbon

(Basic method assumed atmospheric level 
is constant)
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Bristlecone Pine, 
European Oak, etc.
Oldest living tree 
~4,600 years
Record extended 
using fossil trunks to 
~12,400 years
Cross-comparisons 
(different species & 
labs) show excellent 
agreement
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Tree Ring Calibration CurveTree Ring Calibration Curve
14C age

(Courtesy J. Southon and S. Trumbore, UCI)



Lake VarvesLake Varves

Annual layers
Light layers from 
springtime diatoms 
(Japan) 
Fine silt and lower 
18O/16O from 
glacial meltwater
(Scandanavia)

Layers are 
counted
Organic inclusions 
are dated

Annual layers
Light layers from 
springtime diatoms 
(Japan) 
Fine silt and lower 
18O/16O from 
glacial meltwater
(Scandanavia)

Layers are 
counted
Organic inclusions 
are dated (Lake Suigetsu, Japan. Courtesy J. van der Plicht, Groningen)
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(Taylor 1987 fig. 2.14)

Suess effect:
Fossil fuels dilute 
atmospheric 14C
Evident thru ~1955

Bomb radiocarbon:
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Comprised a “Third Radiocarbon Revolution”
(R.E. Taylor)
Invented by R.A. Muller, 1976

Followup to Alvarez, 1939
Particle accelerator used as a mass spectrometer
Counts atoms rather than decay electrons

~1000x less material than beta counting
~0.1 to 1 mg of carbon vs ~1 g

~1000x faster than beta counting
A few minutes vs a few days for +/- 20 year 
precision on modern carbon
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14C has extremely 
low abundance
Instrument needs 
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rejection of 
interferences
Nuclear physics 
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Pre-treatment
Mechanical cleaning
Acid (HCl), or acid-alkali(NaOH)-acid rinse
Sometimes more complex chemistry

Conversion to CO2
Organic C: combustion (oxidation) with CuO in 
sealed tube
Carbonates: acid hydrolysis in sealed tube

Reduction to graphite
Hydrogen reduction with Fe catalyst
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(Vogel et al 1987)
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Accelerator DiagramAccelerator Diagram

(LLNL CAMS laboratory; Taylor & Aitken 1997 fig. 3.5)
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Sources
1) In-situ (or collection or storage) contamination
2) Processing Background

Tube and graphitization line surfaces
Lab chemicals

3) Instrument background
Ion source memory
Mass spectrometer background
Detector background

Characterization and correction
Parallel-process known radiocarbon-free material
Use as process blank
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ICR RATE ProjectICR RATE Project
RATE claim: 

Background and contamination are really intrinsic radiocarbon left over from 
Creation
Evidence: bio vs geo samples, shells, coal, diamond

Specific problems with claim:
RATE assumes essentially zero process background

Erroneously compares processed to unprocessed samples
RATE assumes unrealistically small instrument background

High sensitivity analytical equipment generally has non-zero (and variable) levels
Shells: frequently anomalous, probably due to carbon exchange in situ
Coal: probably in situ contamination (known mechanisms)
Diamond: probably instrument background

More: <http://www.asa3.org/ASA/education/origins/rate.htm>
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~ 1mg C sample size
Range:

~ 12,000 years cal to tree rings
~ 45,000 years cal to lake varves
~ 60,000 years uncal without heroics
> 75,000 years uncal with isotopic enrichment

~ 0.25% msmt error (~ +/-20 years 
uncalibrated error [1σ])
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Archaeology
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Near East
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Red: paleographic 
dates
Blue: 1σ calibrated 
14C dates

On avg ~35 yrs 
older
Difference may be 
real
Some may have 
had glue 
contamination
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Turin ShroudTurin Shroud

(Taylor & Aitken 1997 tbl 3.3)
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(Peng & Broecker 1992 fig. 7.2)
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(Tuniz 1998 fig. 3.1)
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Could calibrated dates be in error by large factors?

Would require independent parameters to vary in coupled manner 
(pathological)
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