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Radiocarbon Dating

= What is it?
= How well does it work?
= What is it good for?




Willard F. Libby

= 1948: First radiocarbon
date

1950: First “date list” (148
samples)

1960: Nobel Prize In
Chemistry “for his method
to use Carbon-14 for age
determinations in
archaeology, geology,
geophysics and other
sciences”




|Isotopes of Carbon

= 12C: “Normal” carbon (6 protons, 6 neutrons)

= 13C: Stable, about 1.1% of natural carbon (6
protons, 7 neutrons)

= 14C: Unstable “radiocarbon”, about 10-12 of
modern carbon (6 protons, 8 neutrons)
e Decays to “N by beta decay (electron emission)

14 14 -
CoOTN+ 4 +v,




14C Decay

= Decay Is random, with fixed probability

Independent of time, environment, etc.
Precay = 4

decay ~

= Decay rate Is constant

= Often expressed as “half-life”

ty, = In72 ~ 5730 years (5568 Libby value)




14C Production
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Principle of *4C Dating

Living (“modern”) organisms in equilibrium with
atmosphere (14C/12C about 10-12)

Current radiocarbon content Is measured
(typically expressed as Fraction or % Modern)

Decay equation gives time of organism death

5568 yrs
=N ™’

“Radiocarbon age” is generally expressed in
years BP (“before present”)

“modern” = “present” = 1950 AD; based on NIST
Oxalic Acid 1 standard, or secondary |IAEA standards




Mass Fractionation

= Chemical and biological processes (e.g.
diffusion) affect ratio due to *C/12C mass
difference

= Fractionation can be characterized and
corrected based on measured 813C
e CO,inair: 63C ~ -8 %o
e Cintree: 813C ~ -28 %o
* “modern” or “present” is further defined as

having 613C = -25 %o; 1*C measurements are
corrected to this value




14C Calibration

= A “Second Radiocarbon Revolution”
(R.E. Taylor)

= Tree Rings or Lake Varves are counted
to give give independent date

= Allows correction for and
characterization of atmospheric
variations in radiocarbon

e (Basic method assumed atmospheric level
IS constant)




Tree RIngs

Bristlecone Pine,
European Oak, etc.

Oldest living tree
~4,600 years

Record extended
using fossil trunks to
~12,400 years

Cross-comparisons
(different species &
labs) show excellent
agreement




Tree Ring Calibration Curve

= Msmts by

four different
labs on two
different
species show
excellent
agreement
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Ring Calibration Curve
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Lake Varves

= Annual layers

e Light layers from .
springtime diatoms
(Japan)

 Fine silt and lower
180Q/16Q from
glacial meltwater
(Scandanavia)

= Layers are
counted

* Qrganic inclusions
alre dated (Lake Suigetsu, Japan. Courtesy J. van der Plicht, Groningen)

e ——




Lake Varve Calibration

Statistical

“Wiggle- S s,
match” to

tree ring

calibration

curve

Extends
calibration to
~45,000

years (Courtesy J. van der Plicht, Groningen)




Recent *C Anomolies
= Suess effect T T

* Fossil fuels dilute 80
atmospheric “C o
e Evident thru ~1955 \
= Bomb radiocarbon: .
* Nearly doubled #C ' | oo

concentration

o
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(Taylor 1987 fig. 2.14)




Accelerator Mass
Spectrometry (AMS)

= Comprised a “Third Radiocarbon Revolution”
(R.E. Taylor)
* |[nvented by R.A. Muller, 1976
e Followup to Alvarez, 1939
e Particle accelerator used as a mass spectrometer
e Counts atoms rather than decay electrons

= ~1000x less material than beta counting
e ~0.1to 1 mg of carbonvs ~1 g
= ~1000x faster than beta counting

e A few minutes vs a few days for +/- 20 year
precision on modern carbon




Why an Accelerator?

= 14C has extremely
low abundance

= |pstrument needs
extremely high
rejection of
Interferences

* Nuclear physics
techniques allow this

MASS NUMBER
13

OF
°L  CAESIUM SPUTTERED
C~ IONS

ION CURRENT KA

CONTEMPORARY ——
|4C
12000 YEARS —

ol9 - 020 0.'2I 0.22
INJECTCR MAGNETIC FIELD (TESLA)

Fig 16.2. Magnetic analysis of the negative ions sputtered from a carbon target

(Beukens 1992 fig. 16.2)




Typical Sample Preparation

= Pre-treatment
 Mechanical cleaning
e Acid (HCI), or acid-alkali(NaOH)-acid rinse
e Sometimes more complex chemistry

= Conversion to CO,

e Organic C: combustion (oxidation) with CuO iIn
sealed tube

e Carbonates: acid hydrolysis in sealed tube
= Reduction to graphite
 Hydrogen reduction with Fe catalyst




Graphitization Line
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Graphitization Lines




Accelerator Diagram
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Accelerator Examples

(CAMS, LLNL)

(Isotrace lab, U Toronto)




Contamination and
Background

= Sources
e 1) In-situ (or collection or storage) contamination
e 2) Processing Background

= Tube and graphitization line surfaces
= Lab chemicals

e 3) Instrument background
= |on source memory
= Mass spectrometer background
= Detector background

= Characterization and correction
e Parallel-process known radiocarbon-free material
e Use as process blank




ICR RATE Project

= RATE claim:

e Background and contamination are really intrinsic radiocarbon left over from
Creation

e Evidence: bio vs geo samples, shells, coal, diamond

= Specific problems with claim:

e RATE assumes essentially zero process background
= Erroneously compares processed to unprocessed samples

RATE assumes unrealistically small instrument background
= High sensitivity analytical equipment generally has non-zero (and variable) levels

Shells: frequently anomalous, probably due to carbon exchange in situ
Coal: probably in situ contamination (known mechanisms)
Diamond: probably instrument background

= More: <http://www.asa3.org/ASA/education/origins/rate.htm>




Modern Capabilities

= ~ 1mg C sample size
* Range:
e ~ 12,000 years cal to tree rings
e ~ 45,000 years cal to lake varves

e ~ 60,000 years uncal without heroics
e > 75,000 years uncal with isotopic enrichment

* ~0.25% msmt error (~ +/-20 years
uncalibrated error [1c])




Applications

= Archaeology
e Prehistory
e Peopling of New World
* Near East
* [ron artifacts (pre-industrial revolution)

= Geosclience
= Climatology
= Bloscience




Dead Sea Scrolls

= Red: paleographic
dates
» Blue: 1o calibrated
14C dates
* Onavg ~35yrs
older

» Difference may be
real

 Some may have
i had glue
(after Bonani 1992) contamination
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Table 3.3. AMS “C Dating of the Shroud of Turin®

Turin Shroud

Known age
Egyptian linen Shroud
AMS 14C age AMS 14C
Laboratory (yrs. BP) (yrs. BP)
2,0104+80
110 BC-AD 75
Arizona 1,838+47 591430
2,041+43 690+35
1,960+55 606+41
1,983+37 701433
2,137+46
Mean=1,995+46 Mean= 646+31
Oxford 1,955+70 795 +65
1,975+33 730+45
1,9904+50 745+355
Mean=1,980+35  Mean= 750+30
1,984 +50 733+61
1,886+48 722 +56
1,954 +50 635+57
639+45
679+51
Mean= 1,940+30 Mean= 676124
Combined Mean 14C age Mean 4C age
= 1,964 +20 = 689116
Calibrated age Calibrated age
= 10 BC-AD 80 = AD 1260-1390°

8 Based on data from Damon et al. 1989.
b 95% confidence interval.

(Taylor & Aitken 1997 tbl 3.3)




Applications

= Archaeology

= Geoscience
e Ocean Circulation
* Hydrology (groundwater)
e Earthquake and volcano dating

= Climatology
= Bioscience




Ocean Circulation

80

W ‘\_“k/\r’\ g/\w }‘rg\,\n}\E i /@ oli5 . . }Q“ﬁ
7 ) > & D '“5//?“ APPARENT "¢ AGE
6( . V , DIFFERENCE
1375 6‘ ; 5 s 501;& 7 BETWEEN 3km AND Okm
+1400 1500 z ,(YEARS)

500 E;""Ts‘z?—_’- s
. 50
J/Jmm\_/m\gz . , T

770 1870
1750 ° % e * 1910

01845 1870

®1500 . |275 ®1320

L]
1535
0” . N
1525
O|565 1380 ¢ « 1580 . Q 1250 .|3zo/

120 1205'2°° /25 |300
1000

500

270
.
155
)

o

160 - 120 120

Fig 7.2. The distribution of the age difference between dissolved carbon from waters at 3 km depth and dissolved carbon from surface waters
prior to nuclear testing

(Peng & Broecker 1992 fig. 7.2)




Applications

= Archaeology
= Geosclence

= Climatology
e Carbon cycle research
e Palynology (fossil pollen)

e Glacial meltwater plumes (foraminifera
correlated to 6120)

= Biosclence




Applications

= Archaeology
= Geoscience
= Climatology

» Bioscience
e Biochemical pathways
e Carcinogen metabolism
* Radiocarbon-depleted mice




Summary

» 14C has been calibrated to ~45,000
years

= AMS allows very small samples
= |ots of interesting applications
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Accelerator Diagram
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lonization of graphite
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Figure 3.2 lon source geometries: (a) focused Cs source, and (b) high-intensity source.

= Cs-sputter sources are standard (Tuniz fig 3.2)
= Ongoing research on gas sources




Tree Ring Calibration
Corrections

(Taylor & Aitken 1997 fig. 3.2)
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dendrochronologically-calibrated age (BC/AD) |

= Max correction ~10% over past 8000 years (~7% with correct half-life)

= Could calibrated dates be in error by large factors?

* Would require independent parameters to vary in coupled manner
(pathological)




