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Abstract. A remarkable series of breakthroughs in numerical relativity modeling of black hole
binary mergers has occurred over the past few years. This paper provides a general overview of
these exciting developments, focusing on recent progress in merger simulations and calculations of
the resulting gravitational waveforms.
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INTRODUCTION

The coalescence of a comparable mass black hole binary (BHB)is a powerful source of
gravitational waves and proceeds in three phases: inspiral, merger, and ringdown [1].
The inspiral stage, when the BHs are widely separated and following quasi-circular
trajectories, and the ringdown stage, during which the finalmerged BH settles into
a quiescent Kerr state, can both be treated analytically. However the merger phase,
in which the two BHs plunge together and merge to form a highlydistorted remnant
BH, occurs in the arena of very strong, dynamical gravitational fields and can only be
calculated using numerical relativity.

This final merger will produce an intense burst of gravitational radiation with a
luminosity∼ 1023L⊙, briefly emitting more energy than the combined light from all
the stars in the visible universe. Such bursts are expected to be among the strongest
sources for LISA, which will observe mergers of massive BHBs. Mergers of stellar mass
and intermediate mass BHBs are likely to be the strongest sources for ground-based
gravitational wave detectors such as LIGO and VIRGO. Observing the gravitational
waves from the final merger will allow unprecedented tests ofgeneral relativity in the
dynamical, strong field regime – provided we know the waveforms that general relativity
predicts.

The final merger of BHBs also has compelling astrophysical implications. In partic-
ular, when the BHs have unequal masses, the resulting gravitational wave emission is
asymmetric; since the gravitational waves carry momentum,the merged remnant BH
suffers a recoil kick [2]. If this kick is large enough, it could eject the merged remnant
from its host structure, thereby affecting the overall rateof merger events [3]. In ad-
dition, since BHBs are generally expected to be spinning, their mergers could produce
interesting spin dynamics and couplings [4].

For more than 30 years, numerical relativists have attempted to calculate the merger
of comparable mass BHs and the resulting gravitational waveforms. This has proved



to be a very difficult undertaking indeed. In particular, thesimulation codes have been
plagued by a host of difficulties, typically resulting in various instabilities that caused
them to crash before any sizeable fraction of a binary orbit could be evolved.

Recently, however, a series of dramatic breakthroughs has occurred in numerical rel-
ativity, resulting in accurate and robust simulations of BHB mergers and their gravi-
tational waveforms. This paper provides a general overviewof these exciting develop-
ments. We begin with a brief overview of numerical relativity and BHB calculations. The
heart of the paper then focuses on recent progress in computing BHB orbits and mergers,
and the resulting waveforms. The paper concludes with a summary and outlook for the
future.

With the goal of reaching as wide an audience as possible, technical details are
deliberately kept to a minimum; interested readers can find more detailed information
in the references.1 We follow conventional practice by settingG = 1 andc = 1, which
allows us to measure both time and distance in terms of massM. In particular, 1M ∼
(5× 10−6)(M/M⊙)sec∼ 1.5(M/M⊙)km. Spatial indices are taken to have the range
i = 1,2,3. Note that the simulation results scale with the masses of the BHs, and are
thus applicable to LISA as well as to ground-based detectors.

NUMERICAL RELATIVITY

Numerical relativists construct a spacetime by solving theEinstein equations on a com-
puter. In the most commonly used “3+1” [5, 6] approach, 4-D spacetime is considered
to be sliced into a stack of 3-D spacelike hypersurfaces labeled by timet. The main in-
dependent variables are essentially the 3-metricgi j and its first time derivative∂tgi j on
each slice. The equations split naturally into two sets. Theconstraint equations provide
relationships that must be satisfied at any timet; in particular, initial data for BHBs is
set by solving the constraint equations on a 3-D slice at someinitial time t = 0. The
evolution equations are used to propagate this data forwardin time. The four coordinate
degrees of freedom in general relativity give four freely-specifiable coordinate or gauge
conditions for the future development of the time and spatial coordinates. During the
evolution the gauge is specified by the lapse functionα, which gives the lapse of proper
time α∆t between neighboring slices, and the shift vectorβ i, which governs how the
spatial coordinates develop from one slice to the next.

Efforts to evolve the merger of two BHs have a long history.2 The first attempt to
solve the Einstein equations on a computer was carried out byHahn and Lindquist in
1964 [7], who tried to evolve the head-on collision of two equal mass BHs. (Since the
term “black hole” had not yet been coined, they called their paper “The two-body prob-
lem in geometrodynamics.”) Due in part to a poor choice of coordinate conditions, the

1 Since this paper is not a full review of the subject, the reference list is representative rather than
comprehensive. We attempted to cite key papers from the major numerical relativity efforts that were
steppingstones to the current breakthroughs.
2 An excellent history of the developments in numerical relativity treatments of the BHB problem can
be found in the talk by Miguel Alcubierre at the Astrophysical Applications of Numerical Relativity
workshop held in May 2006 in Guanajuato, Mexico.



evolution crashed shortly after it began. In the mid-1970s,Smarr and Eppley [8, 9, 10]
pioneered the use of the the 3+1 approach with improved coordinate conditions, includ-
ing conditions on the lapse function to produce slices that avoid crashing into singu-
larities [11, 12]. Although their simulations encounteredinstabilities and had problems
with accuracy, they were able to evolve the head-on collision and extract some infor-
mation about the resulting gravitational waves. Followingthis significant achievement
there was very little work on BHB simulations throughout the1980s, although some
numerical relativity work did continue, mostly on neutron stars.

In the 1990s work on ground-based gravitational wave detectors such as LIGO moved
ahead strongly; since BHB mergers are considered one of the most promising sources
for these detectors, numerical relativity work on the BHB problem started up again.
More accurate calculations of head-on collisions were carried out, starting in axisym-
metry [13]. In the mid-1990s, the NSF funded the Binary BlackHole Grand Challenge
collaboration, a large multi-institution effort aimed at evolving BHBs in 3-D and calcu-
lating the resulting gravitational wave signatures. A vigorous numerical relativity pro-
gram was also started at the newly-formed Albert Einstein Insitutue in Germany. While
many important developments resulted from this era, including the development of large
3-D codes and the ability to evolve boosted BHs [14] and grazing collisions [15, 16, 17],
the problem turned out to be more difficult than anticipated and the codes were plagued
by instabilities that caused them to crash.

During the late 1990s and early 2000s, the ground-based detectors began taking data,
the importance of BHB mergers as sources for LISA grew, and new research groups
arose in numerical relativity. The role of unstable modes present in the formulations
of the numerical relativity equations was recognized as a major issue. Work on key
areas such as gauge conditions, formalisms, boundary conditions, and the role of the
constraints in evolutions was carried out. Overall, progress in obtaining stable 3-D
BH evolutions was slow and incremental. The Lazarus approach combined a brief
3-D numerical relativity evolution of a BHB near the final plunge with a late-time
perturbative evolution to make use of the short-duration stable evolutions that were then
possible, and produced the first gravitational waveform from a BHB [18, 19].

Most of the recent work in numerical relativity has been carried out using a confor-
mal formulation of the Einstein equations known as BSSN [20,21]. In this approach,
the set of evolution equations has first-order time derivatives and second-order spatial
derivatives, and is strongly hyperbolic [22, 23]. The constraint equations have been in-
corporated into the evolution equations to improve the performance. In some cases the
BHs are represented as “punctures,” with the singular partsbeing factored out [24];
in other cases, the BH interiors are excised to remove the singular parts from the grid
[25, 26]. Various gauge conditions were developed to allow longer evolutions, including
new slicing conditions that avoid evolving into a singularity and shift conditions that
prevent the coordinates from falling into the BHs [27]. Other approaches feature fully
first-order symmetric hyperbolic formulations of the Einstein equations and special at-
tention to constraint preserving boundary conditions [28].

For successful BHB merger simulations, it is necessary to resolve both the BHs
(with spatial scales∼ M) and extract the gravitational radiation (with scalesλGW ∼
(10−100)M) in the wave zone. Since the large 3-D codes strain the capacities of current
high performance computing facilities, this requires the use of variable resolution within



the computational domain. Most of the current numerical relativity codes use finite
differences on a 3-D Cartesian grid with fixed or adaptive mesh refinement. There are
also a few efforts that use spectral methods, which also incorporate variable resolution.

In the past two years, there has been significant and rapid progress in numerical
relativity simulations of BHB mergers across a broad front.The first complete orbit
of a BHB was achieved in 2004. This was followed shortly by thefirst simulation of a
BHB through an orbit, plunge, merger and ringdown. Since late 2005, new ideas have
opened the field up even more, and the past year has seen dramatic progress. These
developments are reviewed in the next section.

BHB ORBITS AND MERGERS

The first complete orbit of an equal mass, nonspinning BHB binary was achieved by
Brügmann, Tichy, and Jansen [29] using the standard conformal BSSN approach with
the BHs represented as “punctures” [24]. The 3-metric on theinitial slice is written
asgi j = ψ4δi j, where the conformal factorψ = ψBL + u and i, j = 1,2,3. The static,
singlar part of the conformal factor has the formψBL = 1+ ∑2

n=1 mn/2|~r−~rn|, where
thenth puncture black hole has massmn and is located at~rn. The nonsingular functionu
is obtained by solving one of the constraint equations.

In the standard puncture approach, the singular part of the metic is factored out and
handled analytically during the evolution, and only the regular parts are evolved numer-
ically. This requires that the punctures remain fixed on the numerical grid, resulting in
a stretching of the coordinate system and the development oflarge errors in the metric
as the binary evolves. Excision of the regions around the punctures (but within the hori-
zons) can be used to reduce errors and prolong these runs; excision can be applied to the
individual punctures as well as inside a common horizon at late times.

For head-on and grazing collisions starting from relatively close separations, these
methods work fairly well, as a common horizon forms quickly and excision prevents
the unbounded growth of errors and allows the simulations tocontinue long enough
for the BHs to merge. For orbiting BHs, a corotating coordinate frame implemented
by an angular shift vector is needed since the punctures remain fixed on the grid. This
can cause serious problems, however, such as superluminal coordinate speeds at large
distances from the BHs and incoming noise from the outer boundary of Cartesian grids.

Brügmann, Tichy, and Jansen [29] introduced comoving coordinates using a shift
vector that is dynamically adjusted during the evolution ofthe BHB to minimize both
the angular and radial motion of the BHs. Their code uses fixedmesh refinement
implemented by nested Cartesian boxes, with the resolutiondecreasing for boxes that
span successively larger regions of the domain. They were able to evolve a BHB using
excised punctures for more than one orbit, tot ∼ 185M, whereM is the total mass of
the system. The code did crash before the BHs merged and inaccuracies in the outer
regions prevented the extraction of gravitational waves. Their paper first appeared as a
preprint in December 2003. Later, more accurate work by Diener, et al.[30] highlights
the importance of high resolution and the effects of gauge choices on the resulting
evolutions. Nevertheless, this first simulation of a full BHB orbit was a major step
forward.



FIGURE 1. Waveforms from Pretorius’ simulation [31].

In the first part of 2005, Pretorius carried out the first evolution of a BHB through a
single plunge orbit, merger and ringdown [31] using an approach completely different
from the standard one [32, 33]. Instead of using the 3+1 technique, he evolves the 4-
metric directly, using generalized harmonic coordinates.The evolution equations have
second-order time derivatives and constraint damping terms designed to remove spu-
rious non-physical solutions. Numerical dissipation is added to control high frequency
instabilities.

His initial data consists of two Lorentz-boosted scalar field profiles, with positions and
velocities chosen to approximate a BHB orbit. Each scalar field configuration quickly
collapses to form a BH, yielding a BHB system. The BH interiors are excised and the
BHs move freely across the grid as the binary evolves; no corotating coordinates are
needed. Adaptive mesh refinement is used to provide higher resolution in the regions
near the BHs. Outside the orbital region, fixed mesh refinement is implemented using
nested Cartesian boxes centered on the origin.

In Pretorius’ simulation the BHs plunge together, completing∼ 1 orbit before merg-
ing. The code continues to run stably during the subsequent ringdown of the merged
remnant BH, allowing the emitted gravitational waves to propagate outward far enough
to be extracted. Figure 1 is taken from Ref. [31] and shows thegravitational waveforms
from this simulation as represented byrΨ4, whereΨ4 is the real part of the Weyl tensor
component andr is the coordinate distance from the center of the grid.3

This achievement set a new standard in numerical relativity. And the use of these
nonstandard techniques raised the important question of whether such methods were
essential for successful BHB merger simulations.

3 For comparison with the waveforms shown in Figure 3, note that Pretorius uses the time coordinate
t/M0, whereM0 is the mass of a single BH. Also, the amplitude ofrΨ4 has not been scaled withM; when
this is done, the amplitude is comparable with that shown in Figure 3.



In late 2005 this question was answered when the numerical relativity groups from the
University of Texas at Brownsville (UTB) [34] and NASA’s Goddard Space Flight Cen-
ter [35] simultaneously and independently discovered a wayto evolve a BHB through
an orbit, plunge, and merger within the 3 + 1 approach. Both oftheir codes are based
on the BSSN formalism, with a key difference. Initially the BHs are set up using the
standard puncture technique. However, during the evolution the singular part of the con-
formal factor isnot factored out but rather is evolved together with the nonsingular part,
using regularization to handle the puncture singularities. This allows the puncture BHs
to move freely across the grid; no excision or corotating coordinates are needed.

Important ingredients in the success of the moving puncturemethod are the novel co-
ordinate conditions for the lapse and shift. The UTB and Goddard groups each developed
somewhat different lapse and shift conditions; both codes produced stable and accurate
evolutions of a BHB through the final plunge, merger, and ringdown. The UTB code
used a particular coodinate transformation to allow the grid resolution to vary smoothly
over the computational domain, whereas the Goddard code employed fixed mesh refine-
ment based on nested Cartesian boxes. Both groups were able to extract accurate and
convergent gravitational waveforms.

The first results from moving puncture evolutions were presented by the UTB and
Goddard groups in early November 2005 at the “Numerical Relativity 2005” workshop,4

and the papers were submitted shortly thereafter. Since these techniques were developed
within the widely-used traditional 3+1 numerical relativity approach, they could be
readily adopted by other groups with similar 3-D BSSN codes.Indeed, in early January
2006 the Penn State group submitted a paper applying these techniques to evolutions
of nonequal mass BHBs [36]. The UTB and Goddard groups moved quickly and were
soon able to evolve multiple orbits followed by merger and ringdown [37, 38, 39]. At
the April 2006 APS meeting, an entire session was devoted to BHB merger simulations
with moving punctures. More groups adopted the moving puncture technique and, by
the summer of 2006, this method was being actively used, studied, and advanced by the
majority of the numerical relativity community working on BHB simulations.

In the early spring of 2006, the Goddard group used the movingpuncture method
to study the dynamics and radiation generation in the last few orbits and merger of
an equal mass nonspinning BHB [38]. Using adaptive mesh refinement to follow the
BHs in the orbital region and fixed mesh refinement based on nested Cartesian boxes
in the outer regions, they ran a series of long duration runs starting from successively
wider separations. In each case, the BHs start out on approximately circular orbits; key
parameters for these runs are given in Table 1. Here,L/M0 is the initial proper separation
of the BHs,5 Tsim is the duration of each run, andTmergeris the time at which the merger
occurs, starting from the initial time in each run. The number of orbitsNorbits is estimated
from the trajectories; see Figure 2.

Note that these initial data sets are an approximation to theactual conditions of a
BHB in the real universe. Astrophysically, a BHB quickly circularizes and then spirals
together, emitting gravitational waves, through> 103 nearly circular orbits before the

4 The presentations from this meeting are posted at http://astrogravs.gsfc.nasa.gov/conf/numrel2005/.
5 For the Goddard runs,M0 is the initial total system mass.

http://astrogravs.gsfc.nasa.gov/conf/numrel2005/


TABLE 1. Parameters of long duration
BHB runs calculated by the Goddard group
using the moving puncture method [38].

Run L/M0 Tsim Tmerger Norbits

R1 9.9 421M 160M 1.8
R2 11.1 531M 234M 2.5
R3 12.1 530M 396M 3.6
R4 13.2 850M 513M 4.2
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FIGURE 2. Paths of BHs for the long duration runs by the Goddard group, with parameters given in
Table 1. For clarity, only the track of one BH from each run is shown [38].

final plunge and merger. Ideally, one would start a numericalrelativity simulation of
a BHB with initial data that uses BH positions and velocitiesfrom an inspiralling
astrophysical orbit, and includes the outgoing gravitational radiation from earlier parts
of the inspiral. If this were possible, one could carry out a sequence of simulations,
starting the BHs with successively wider separations, and expect the BHs to follow
the same astrophysical trajectories all the way through themerger. Unfortunately, there
are currently no methods available for setting up such astrophysically accurate initial
data. All existing methods produce BHB initial data with various spurious effects that
deviate somewhat from the desired astrophysical data. However, if these deviations are
small enough, they should disappear as the BHs spiral together, leading to the correct
astrophysical trajectory predicted by the Einstein equations.

The sequence of runs by the Goddard group clearly demonstrates this behavior.
Figure 2, which is taken from Ref. [38], shows the trajectories followed by the punctures
in their four runs; for clarity, only the track of one of the BHs from each simulation is
shown. Run R4 has the widest initial separation and completes the most orbits. After an
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FIGURE 3. Waveforms from the long duration runs by the Goddard group, with parameters given in
Table 1 [38]

initial transient period of approximately one orbit, the trajectory from each of the other
runs nearly locks on to the R4 trajectory. For the final orbit,the trajectories from all of
the runs are very nearly superposed. The fact that the BH paths lock on to a common
universal trajectory for the final orbit and thereafter supports the idea that the late-time
dynamics is dominated by the strong-field interactions and radiative losses; this has the
effect of reducing the dependence on the initial conditions.

This universal dynamics produces a universal gravitational waveform. Figure 3, which
is taken from Ref. [38], shows one polarization component ofrΨ4, whereΨ4 is the Weyl
tensor component. The waveforms have been normalized so that the peak amplitude of
the gravitational radiation occurs att = 0. These waveforms all agree to within 1% for
the last orbit, merger and ringdown (aftert ∼−50M f ) and, except for a brief initial pulse
at the beginning of each run, to within∼ 10% for the preceeding few orbits (shown in
the inset).

The Goddard simulations consistently produce a final mergedremnant BH with spin
a/m = 0.69 to within∼ 1%. The amount of energy released as gravitational waves varies
slightly, since the simulations have different durations.For the longest run R4, they find
Erad= 0.039M.

The discussion so far has focused on mergers of nonspinning BHs. Astrophysical
BHs, however, are expected to be spinning. The UTB group was the first to carry out
merger simulations of equal mass BHBs with spins [40]. Usingthe moving puncture
method, they evolved BHs with equal spins,a = 0.75m, wherem is the individual
BH mass. They considered two cases: both BH spins aligned with the orbital angular
momentum, and both spins anti-aligned. In both cases, the BHs started out on quasi-
circular orbits with period 125M.

The BHB in the anti-aligned case undergoes a prompt merger, completing∼ 0.9 orbits
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before a common horizon forms, to yield a remnant BH with spina ∼ 0.44M. In the
aligned case, the initial total angular momentum (orbital +spin) > M, and the binary
completes∼ 2.8 orbits before merging to form a BH witha ∼ 0.9M. In this case, it
appears that the merger temporarily stalls as the excess angular momentum is radiated
away, in order to form a final Kerr BH witha < M. Figure 4, taken from Ref. [40], shows
the gravitational waveform from this aligned case. In both the aligned and anti-aligned
cases, the resulting gravitational waveforms show a simpleshape, similar to that seen in
the non-spinning case;c.f. Figure 3

Finally, astrophysical BHBs are also expected to have unequal masses, especially
in the case of the massive BHBs that LISA will observe. As mentioned above, the
gravitational wave emission will be asymmetric in this case, imparting a recoil kick
to the merged remnant BH. Although post-Newtonian techniques have been used to
calculate the kick velocity during the inspiral [41, 42], almost all of the recoil comes
from the strong gravity regime. Numerical relativity simulations are therefore needed
for an accurate calculation of the kick velocity. Unequal mass merger calculations are
technically more demanding than the equal mass case, due in part to the need to resolve
the smaller BH which moves faster than the larger one. In addition, getting the correct
value for the kick requires a sensitive calculation arisingfrom higher-order gravitational
wave modes.

The Penn State group was the first to calculate mergers of unequal mass nonspinning
BHBs, employing the moving puncture method [36]. Using fairly low resolution and
starting their BHs at relatively close separations, they ran several different mass ratios
in the range 1≤ m1/m2 ≤ 0.32, and quote lower limits on the kick velocities. More re-
cently, the Goddard group carried out more accurate calculations with higher resolution



for the casem1/m2 = 0.67 [43]. They also examined the dependence of the resulting
kick velocity on the initial separation of the BHs. Using higher resolution and adaptive
mesh refinement, they estimate the astrophysically relevant range of kick values to be
(86−97)km/s for this mass ratio.

SUMMARY AND FUTURE OUTLOOK

The past few years have seen a remarkable series of breakthroughs in numerical relativity
modeling of BHB mergers. The first BHB orbit was achieved by Brügmann, Tichy,
and Jansen [29] using special comoving gauge conditions in atraditional numerical
relativity code in late 2003. Roughly a year and a half later,the first plunge, merger, and
ringdown calculation by Pretorius appeared, using nonstandard techniques and including
the extraction of the gravitational waveform [31].

Less than six months later, in November 2005, the moving puncture method was
introduced by the UTB [34] and Goddard [35] groups, enablingmerger calculations
with simple but novel gauge conditions in traditional numerical relativity codes. This
was rapidly exploited by its developers and, by the early spring of 2006, the Goddard
group had obtained a consistent solution for the gravitational wave burst from the merger
of two equal mass Schwarzschild BHs, independent of the (quasi-astrophysical) initial
conditions [38]. Very shortly thereafter, the UTB group produced the first evolutions
of equal mass, spinning BHB mergers, demonstrating the orbital hangup when the BH
spins are aligned with the orbital angular momentum [40].

The first attempt to model unequal mass mergers using the moving puncture method
was carried out by the Penn State group [36] and first appearedin January 2006. This
was soon followed by similar work at higher resolution and larger initial separations
by the Goddard group [43]. Overall, by the summer of 2006, a large segment of the
numerical relativity community was actively adopting, adapting, and exploiting the
moving puncture method.

At the present time there is broad consensus that the merger of two equal mass
Schwarzschild BHs produces a final remnant BH with spina ∼ 0.7M, and that the
amount of energy radiated in the form of gravitatational waves, starting with the final
few orbits and proceeding through the plunge, merger and ringdown, is∼ 0.04M. The
UTB and Goddard groups are working with Pretorius to comparetheir waveforms;
preliminary results using longer runs by the UTB group and Pretorius show good
agreement with the waveforms obtained by the Goddard group shown in Figure 3. Plans
are underway to include other groups in this comparison effort.

The outlook for continued progress in BHB merger simulations is very bright. New
work with moving punctures continues to appear [44, 45, 46].Pretorius is carrying
out new and longer runs with his generalized harmonic code. The Caltech-Cornell
collaboration has made important progress in carrying out orbits with their spectral
code based on a fully first-order formulation of the Einsteinequations [47] and hopes
to achieve mergers soon. The impressive progress in this field, occurring across a broad
front, is very encouraging. Stay tuned!
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