Human genomics: vestiges of Eden or skeletons in the closet?

Dennis R. Venema

Trinity Western University

ASA Meeting August 2, 2009 Baylor University

Talk outline:

Evidence for human : chimp common ancestry

Evidence for ancestral hominid population size

Thoughts on Biblical scientific concordism

Talk outline:

Evidence for human : chimp common ancestry

Evidence for ancestral hominid population size

Thoughts on Biblical scientific concordism

Gustave Dore: *The Deluge* (Dore Illustrated Bible, 1865)

Talk outline:

Evidence for human : chimp common ancestry

Evidence for ancestral hominid population size

Thoughts on Biblical scientific concordism

Titian: The Fall of Man (c. 1570)

NP_000198.1 NP_001008996.1 XP_540786.1 NP_776351.1 NP_032413.1 NP_062003.1 NP_990553.1 NP_571131.1	1 1 1 1 1 1	MALWMRLLPLLALI MALWMRLLPLLVLI MALWMRLLPLLALI MALWTRLRPLLALI MALWMRFLPLLALI MALWIRFLPLLALI MALWIRSLPLLALI MAVWLQAGALLVLI	ALWGPDPAAAFVI ALWGPDPASAFVI ALWAPAPTRAFVI ALWPPPPARAFVI FLWESHPTQAFVI ULWEPRPAQAFVI VFSGPGTSYAAAI	NQHLCGSHLVEAL NQHLCGSHLVEAL NQHLCGSHLVEAL NQHLCGSHLVEAL KQHLCGSHLVEAL KQHLCGSHLVEAL NQHLCGSHLVEAL PQHLCGSHLVDAL	YLVCGERGFFY YLVCGERGFFY YLVCGERGFFY YLVCGERGFFY YLVCGERGFFY YLVCGERGFFY YLVCGERGFFY YLVCGERGFFY	50 50 50 50 50 50 49
NP_000198.1 NP_001008996.1 XP_540786.1 NP_776351.1 NP_032413.1 NP_062003.1 NP_990553.1 NP_571131.1	51 51 51 51 51 51 51 51	TPKTRREAEDLQVG TPKTRREAEDLQVG TPKARREVEDLQVF TPKARREVEGPQVG TPMSRREVEDPQVA TPMSRREVEDPQVA SPKARRDVEQPLVS NPKRDVE-PLLG	GVELGGGPGA GVELGGGPGA ADVELAGAPGE GALELAGGPGA AQLELGGGPGA SS-PLRGEAGV GFLPPKSAQETEV	GSLQPLALEGSLQI GSLQPLALEGSLQI GGLQPLALEGALQI GGLEGPPQI GDLQTLALEVAQQI GDLQTLALEVARQI LPFQQEEYEKVI ADFAFKDHAELIRI	KRGIVEQCCTS KRGIVEQCCTS KRGIVEQCCAS KRGIVDQCCTS KRGIVDQCCTS KRGIVEQCCHN KRGIVEQCCHK	98 98 93 98 98 98 95 95
<u>NP_000198.1</u> <u>NP_001008996.1</u> <u>XP_540786.1</u>	99 99 99	ICSLYQLENYCN ICSLYQLENYCN ICSLYQLENYCN	110 110 110	Protein Acc.	Organism	
<u>NP_776351.1</u> NP_032412_1	94	VCSLYQLENYCN	105	NP_000198.1	Homo sapiens	
NP_062003.1	99	ICSLYOLENYCN	110	NP_001008996.1	Pan troglodytes	
NP 990553 1	96	TCSLYOLENYCN	107	XP_540786.1	Canis lupus famili	aris
NP 571131 1	97	POSTFELONYON	108	NP_776351.1	Bos taurus	
<u>NE_0/1101.1</u>	21	FORTERDŐMICN	100	100 000 110 1	14	

http://blast.ncbi.nlm.nih.gov/Blast.cgi

NP_000198.1	Homo sapiens
NP_001008996.1	Pan troglodytes
XP_540786.1	Canis lupus familiaris
NP_776351.1	Bos taurus
NP_032413.1	Mus musculus
NP_062003.1	Rattus norvegicus
NP_990553.1	Gallus gallus
NP_571131.1	Danio rerio

		V V	
NP 000198.1	1	MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFY	50
NP 001008996.1	1	MALWMRLLPLLVLLALWGPDPASAFVNQHLCGSHLVEALYLVCGERGFFY	50
XP 540786.1	1	MALWMRLLPLLALLALWAPAPTRAFVNQHLCGSHLVEALYLVCGERGFFY	50
NP 776351.1	1	MALWTRLRPLLALLALWPPPPARAFVNQHLCGSHLVEALYLVCGERGFFY	50
NP 032413.1	1	MALWMRFLPLLALLFLWESHPTQAFVKQHLCGSHLVEALYLVCGERGFFY	50
NP 062003.1	1	MALWIRFLPLLALLILWEPRPAQAFVKQHLCGSHLVEALYLVCGERGFFY	50
<u>NP 990553.1</u>	1	MALWIRSLPLLALLVFSGPGTSYAAANQHLCGSHLVEALYLVCGERGFFY	50
<u>NP_571131.1</u>	1	MAVWLQAGALLVLLVV-SSVSTNPGTPQHLCGSHLVDALYLVCGPTGFFY	49
NP 000198.1	51	TPKTRREAEDLQVGQVELGGGPGAGSLQPLALEGSLQKRGIVEQCCTS	98
<u>NP 001008996.1</u>	51	TPKTRREAEDLQVGQVELGGGPGAGSLQPLALEGSLQKRGIVEQCCTS	98
<u>XP 540786.1</u>	51	TPKARREVEDLQVRDVELAGAPGEGGLQPLALEGALQKRGIVEQCCTS	98
<u>NP 776351.1</u>	51	TPKARREVEGPQVGALELAGGPGAGGLEGPPQKRGIVEQCCAS	93
NP 032413.1	51	TPMSRREVEDPQVAQLELGGGPGAGDLQTLALEVAQQKRGIVDQCCTS	98
NP 062003.1	51	TPMSRREVEDPQVAQLELGGGPGAGDLQTLALEVARQKRGIVDQCCTS	98
NP 990553.1	51	SPKARRDVEQPLVSS-PLRGEAGVLPFQQEEYEKVKRGIVEQCCHN	95
<u>NP_571131.1</u>	50	NPKRDVE-PLLGFLPPKSAQETEVADFAFKDHAELIRKRGIVEQCCHK	96
NP 000198.1	99	ICSLYQLENYCN 110	
NP 001008996.1	99	ICSLYQLENYCN 110 Protein Acc Organism	
XP 540786.1	99	ICSLYQLENYCN 110	
<u>NP 776351.1</u>	94	VCSLYQLENYCN 105 NP_000198.1 Homo sapiens	
<u>NP_032413.1</u>	99	ICSLYQLENYCN 110 NP 001008996.1 Pan troglodytes	
<u>NP_062003.1</u>	99	ICSLYQLENYCN 110 XP 540786 1 Carie lunus fam	viliarie
NP_990553.1	96	TCSLYQLENYCN 107 Deg tourus	mano
NP 571131.1	97	PCSIFELQNYCN 108 Bos taurus	

http://blast.ncbi.nlm.nih.gov/Blast.cgi

NP_000198.1	Homo sapiens
NP_001008996.1	Pan troglodytes
XP_540786.1	Canis lupus familiaris
NP_776351.1	Bos taurus
NP_032413.1	Mus musculus
NP_062003.1	Rattus norvegicus
NP_990553.1	Gallus gallus
NP_571131.1	Danio rerio

"Obviously, *function* constrains the sequence, giving merely the appearance of common descent when in fact this is an example of common design."

		_	<u> </u>		
NP 000198.1	1	MALWMRLLPLLALI	ALWGPDPAA	AFVNQHLCGSH	LVEALYLVCGERGFFY
NP 001008996.1	1	MALWMRLLPLLVLI	ALWGPDPAS	AFVNQHLCGSH	LVEALYLVCGERGFFY
XP 540786.1	1	MALWMRLLPLLALI	ALWAPAPTF	AFVNQHLCGSH	LVEALYLVCGERGFFY
NP 776351.1	1	MALWTRLRPLLALI	ALWPPPPAF	AFVNQHLCGSH	LVEALYLVCGERGFFY
NP 032413.1	1	MALWMRFLPLLALI	FLWESHPTC	AFVKQHLCGSH	LVEALYLVCGERGFFY
NP 062003.1	1	MALWIRFLPLLALI	ILWEPRPAC	AFVKQHLCGSH	LVEALYLVCGERGFFY
<u>NP_990553.1</u>	1	MALWIRSLPLLALI	VFSGPGTSY	AAANQHLCGSH	LVEALYLVCGERGFFY
<u>NP 571131.1</u>	1	MAVWLQAGALLVLI	VV-SSVSTN	PGTPQHLCGSH	LVDALYLVCGPTGFFY
_					
NP 000198.1	51	TPKTRREAEDLQVG	QVELGG0	PGAGSLQPLAL	EGSLQKRGIVEQCCTS
NP 001008996.1	51	TPKTRREAEDLQVG	QVELGGG	PGAGSLQPLAL	EGSLQKRGIVEQCCTS
XP 540786.1	51	TPKARREVEDLQVF	NDVELAGA	PGEGGLQPLAL	EGALQKRGIVEQCCTS
NP 776351.1	51	TPKARREVEGPQVG	GALELAGG	GPGAGGL	EGPPQKRGIVEQCCAS
NP 032413.1	51	TPMSRREVEDPQVA	QLELGGG	PGAGDLQTLAL	EVAQQKRGIVDQCCTS
NP 062003.1	51	TPMSRREVEDPQVA	QLELGGG	PGAGDLQTLAL	EVARQKRGIVDQCCTS
NP 990553.1	51	SPKARRDVEQPLVS	S-PLRGE	AGVLPFQQEEY	EKVKRGIVEQCCHN
<u>NP 571131.1</u>	50	NPKRDVE-PLLG	FLPPKSAQE	TEVADFAFKDH	AELIRKRGIVEQCCHK
-					
					a .
NP_000198.1	99	ICSLYQLENYCN	110	Protein Acc.	Organism
<u>NP_001008996.1</u>	99	ICSLYQLENYCN	110	NP_000198.1	Homo sapiens
XP_540786.1	99	ICSLYQLENYCN	110	NP_001008996.1	Pan troglodytes
NP_776351.1	94	VCSLYQLENYCN	105	XP_540786.1	Canis lupus familiaris
NP_032413.1	99	ICSLYQLENYCN	110	NP_776351.1	Bos taurus
<u>NP_062003.1</u>	99	ICSLYQLENYCN	110	NP 032413.1	Mus musculus
<u>NP_990553.1</u>	96	TCSLYQLENYCN	107	NP 062003.1	Rattus norvegicus
<u>NP_571131.1</u>	97	PCSIFELQNYCN	108	NP 990553.1	Gallus gallus
				NP 571131.1	Danio rerio
				NP_571131.1	Danio rerio

- HS atg gcc ctg tgg atg cgc ctc ctg ccc ctg ctg gcg ctg ctg Met Ala Leu Trp Met Arg Leu Leu Pro Leu Leu <mark>Ala</mark> Leu Leu
- PT atg gcc ctg tgg atg cgc ctc ctg ccc ctg ctg g<mark>t</mark>g ctg ctg Met Ala Leu Trp Met Arg Leu Leu Pro Leu Leu <mark>Val</mark> Leu Leu

Observed: 41/42 = 97.6% identity

HS	atg Met	gcc Ala	ctg Leu	tgg Trp	atg Met	cgc Arg	ctc Leu	ctg Leu	ccc Pro	ctg Leu	ctg Leu	gcg Ala	ctg Leu	ctg Leu
			Lou				Lou	Lou		204	204		Lou	204
PT	atg	gcc	ctg	tgg	atg	cgc	ctc	ctg	ccc	ctg	ctg	g <mark>t</mark> g	ctg	ctg
	Met	Ala	Leu	Trp	Met	Arg	Leu	Leu	Pro	Leu	Leu	Val	Leu	Leu
												_		
DS	atg	gcc	ctg	tgg	atg	cgc	ctc	ctg	ccc	ctg	ctg	g <mark>t</mark> g	ctg	ctg
		a	a			a	a	a	a	a	a		a	a
		g	С			g	g	С	g	С	С		С	С
		t	t			t	t	t	t	t	t		t	t
			tta			aga	tta	tta		tta	tta		tta	tta
			ttg			agg	ttg	ttg		ttg	ttg		ttg	ttg

Observed: 41/42 = 97.6% identity

Function-constrained, max divergence (excluding position 12): 22/42 = 52.3% identity

HS	atg	gcc	ctg	tgg	atg	cgc	ctc	ctg	ccc	ctg	ctg	gcg	ctg	ctg
	Met	Ala	Leu	Trp	Met	Arg	Leu	Leu	Pro	Leu	Leu	Ala	Leu	Leu
PT	atg	gcc	ctg	tgg	atg	cgc	ctc	ctg	ccc	ctg	ctg	g <mark>t</mark> g	ctg	ctg
	Met	Ala	Leu	Trp	Met	Arg	Leu	Leu	Pro	Leu	Leu	Val	Leu	Leu
DS	<mark>atg</mark>	<mark>gc</mark> c	c <mark>t</mark> g	<mark>tgg</mark>	<mark>atg</mark>	c <mark>g</mark> c	c <mark>t</mark> c	c <mark>t</mark> g	<mark>cc</mark> c	c <mark>t</mark> g	c <mark>t</mark> g	g <mark>t</mark> g	c <mark>t</mark> g	c <mark>t</mark> g
DS	<mark>atg</mark>	gcc a	c <mark>t</mark> g a	<mark>tgg</mark>	<mark>atg</mark>	c <mark>g</mark> c a	c <mark>t</mark> c a	c <mark>t</mark> g a	ccc a	c <mark>t</mark> g a	c <mark>t</mark> g a	g <mark>t</mark> g	c <mark>t</mark> g a	c <mark>t</mark> g a
DS	<mark>atg</mark>	<mark>gc</mark> c a g	c <mark>t</mark> g a c	<mark>tgg</mark>	<mark>atg</mark>	c <mark>g</mark> c a g	c <mark>t</mark> c a g	c <mark>t</mark> g a c	<mark>cc</mark> c a g	c <mark>t</mark> g a c	c <mark>t</mark> g a c	g <mark>t</mark> g	c <mark>t</mark> g a c	c <mark>t</mark> g a c
DS	<mark>atg</mark>	<mark>gc</mark> c a g t	c <mark>t</mark> g a c t	<mark>tgg</mark>	<mark>atg</mark>	c <mark>g</mark> c a g t	c <mark>t</mark> c a g t	c <mark>t</mark> g a c t	ccc a g t	c <mark>t</mark> g a c t	c <mark>t</mark> g a c t	g <mark>t</mark> g	c <mark>t</mark> g a c t	c <mark>t</mark> g a c t
DS	<mark>atg</mark>	gcc a g t	c <mark>t</mark> g a c t tta	tgg	<mark>atg</mark>	c <mark>g</mark> c a g t aga	c <mark>t</mark> c a g t tta	c <mark>t</mark> g a c t tta	ccc a g t	c <mark>t</mark> g a c t tta	c <mark>t</mark> g a c t tta	g <mark>t</mark> g	c <mark>t</mark> g a c t tta	c <mark>t</mark> g a c t tta

Observed: 41/42 = 97.6% identity

Function-constrained, max divergence (excluding position 12): 22/42 = 52.3% identity

HS	atg	gcc	ctg	tgg	atg	cgc	ctc	ctg	ccc	ctg	ctg	gcg	ctg	ctg
	Met	Ala	Leu	Trp	Met	Arg	Leu	Leu	Pro	Leu	Leu	Ala	Leu	Leu
												_		
\mathbf{PT}	atg	gcc	ctg	tgg	atg	cgc	ctc	ctg	CCC	ctg	ctg	g <mark>t</mark> g	ctg	ctg
	Met	Ala	Leu	Trp	Met	Arg	Leu	Leu	Pro	Leu	Leu	Val	Leu	Leu
DS	atg	<mark>gc</mark> c	c <mark>t</mark> g	tgg	atg	с <mark>д</mark> с	c <mark>t</mark> c	c <mark>t</mark> g	<mark>cc</mark> c	c <mark>t</mark> g	c <mark>t</mark> g	g <mark>t</mark> g	c <mark>t</mark> g	c <mark>t</mark> g
		a	a			a	a	a	a	a	a		a	a
		g	С			g	g	С	g	С	С		С	С
		t	t			t	t	t	t	t	t		t	t
			tta			aga	tta	tta		tta	tta		tta	tta
			ttg			agg	ttg	ttg		ttg	ttg		ttg	ttg

Observed: 41/42 = 97.6% identity

Function-constrained, max divergence (excluding position 12): 22/42 = 52.3% identity

Possible codon combinations (excl. position 12): $4^2 \ge 6^8 = 26,873,856$

HS	atg	gcc	ctg	tgg	atg	cgc	ctc	ctg	ccc	ctg	ctg	gcg	ctg	ctg
	Met	Ala	Leu	Trp	Met	Arg	Leu	Leu	Pro	Leu	Leu	Ala	Leu	Leu
\mathbf{PT}	atg	gcc	ctg	tgg	atg	cgc	ctc	ctg	ccc	ctg	ctg	gtg	ctg	ctg
	Met	Ala	Leu	Trp	Met	Arg	Leu	Leu	Pro	Leu	Leu	Val	Leu	Leu
			_			_	_	_			_	_	_	_
DC	a + a	aaa	a+ a	+ ~ ~	a + a	a <mark>a</mark> a	a+ a	a+ a	<u>~~</u> ~				a+ a	
DS	atg	<mark>gc</mark> c	c <mark>t</mark> g	tgg	atg	с <mark>д</mark> с	c <mark>t</mark> c	c <mark>t</mark> g	<mark>cc</mark> c	c <mark>t</mark> g	c <mark>t</mark> g	g <mark>t</mark> g	c <mark>t</mark> g	c <mark>t</mark> g
DS	<mark>atg</mark>	gcc a	c <mark>t</mark> g a	<mark>tgg</mark>	<mark>atg</mark>	c <mark>g</mark> c a	c <mark>t</mark> c a	c <mark>t</mark> g a	ccc a	c <mark>t</mark> g a	c <mark>t</mark> g a	g <mark>t</mark> g	c <mark>t</mark> g a	c <mark>t</mark> g a
DS	<mark>atg</mark>	<mark>gc</mark> c a g	c <mark>t</mark> g a c	<mark>tgg</mark>	<mark>atg</mark>	c <mark>g</mark> c a g	c <mark>t</mark> c a g	c <mark>t</mark> g a c	<mark>сс</mark> с а g	c <mark>t</mark> g a c	c <mark>t</mark> g a c	g <mark>t</mark> g	c <mark>t</mark> g a c	c <mark>t</mark> g a c
DS	<mark>atg</mark>	gcc a g t	c <mark>t</mark> g a c t	tgg	<mark>atg</mark>	c <mark>g</mark> c a g t	c <mark>t</mark> c a g t	c <mark>t</mark> g a c t	ccc a g t	c <mark>t</mark> g a c t	c <mark>t</mark> g a c t	g <mark>t</mark> g	c <mark>t</mark> g a c t	c <mark>t</mark> g a c t
DS	<mark>atg</mark>	g <mark>c</mark> c a g t	c <mark>t</mark> g a c t tta	tgg	<mark>atg</mark>	c <mark>g</mark> c a g t aga	c <mark>t</mark> c a g t tta	c <mark>t</mark> g a c t tta	ccc a g t	c <mark>t</mark> g a c t tta	c <mark>t</mark> g a c t tta	g <mark>t</mark> g	c <mark>t</mark> g a c t tta	c <mark>t</mark> g a c t tta

Of the > 26 million possible combinations that preserve the sequence at the amino acid level, *the observed pattern is the one most consistent with common descent.*

HS atg gcc ctg tgg atg cgc ctc ctg ccc ctg ctg gcg ctg ctg gcc ctc tgg gga cct gac atg gcc ctg tgg atg cgc ctc ctg ccc ctg ctg g<mark>t</mark>g ctg ctg gcc ctc tgg gga cct gac PT atg gcc ctg tgg atg cgc ctc ctg ccc ctg ctg gcg ctg gcc ctc tgg gga cct gac GG Met Ala Leu Trp Met Arg Leu Leu Pro Leu Leu Ala Leu Leu Ala Leu Trp Gly Pro Asp Val

cca gcc gca gcc ttt gtg aac caa cac ctg tgc ggc tca cac ctg gtg gaa gct ctc tac HS cca gcc tcg gcc ttt gtg aac caa cac ctg tgc ggc tcc cac ctg gtg gaa gct ctc tac PT GG cca gcc gc<mark>g</mark> gcc ttt gtg aac caa cac ctg tgc ggc tc<mark>c</mark> cac ctg gtg gaa gct ctc tac Pro Ala Ala Ala Phe Val Asn Gln His Leu Cys Gly Ser His Leu Val Glu Ala Leu Tyr Ser Δ

HS	atg	gcc	ctg	tgg	atg	cgc	ctc	ctg	ccc	ctg	ctg	gcg	ctg	ctg	gcc	ctc	tgg	gga	cct	gac
PT	atg	gcc	ctg	tgg	atg	cgc	ctc	ctg	ccc	ctg	ctg	g <mark>t</mark> g	ctg	ctg	gcc	ctc	tgg	gga	cct	gac
GG	atg	gcc	ctg	tgg	atg	cgc	ctc	ctg	ccc	ctg	ctg	gcg	ctg	ctg	gcc	ctc	tgg	gga	cct	gac
	Met	Ala	Leu	Trp	Met	Arg	Leu	Leu	Pro	Leu	Leu	Ala	Leu	Leu	Ala	Leu	Trp	Gly	Pro	Asp
	1	4	6	1	1	6	6	6	4	6	6	Val	6	6	4	6	1	4	4	2

HS cca gcc gca gcc ttt gtg aac caa cac ctg tgc ggc tca cac ctg gtg gaa gct ctc tac PT cca gcc tcg gcc ttt gtg aac caa cac ctg tgc ggc tcc cac ctg gtg gaa gct ctc tac GG cca gcc gcg gcc ttt gtg aac caa cac ctg tgc ggc tcc cac ctg gtg gaa gct ctc tac Pro Ala Ala Ala Phe Val Asn Gln His Leu Cys Gly Ser His Leu Val Glu Ala Leu Tyr 4 4 Ser 4 2 4 2 2 6 2 6 4 2 6 4 2 4 6 2

Possible codon combinations (excluding positions 12, 23 and 33):

 $1^4 \ge 2^9 \ge 4^{12} \ge 6^{12} = 18.69 \ge 10^{18}$

Of the > 18 quintillion possible combinations that maintain the conserved sequence at the amino acid level, *the observed pattern is the one most consistent with common descent.*

Note that this is only one tiny fragment in a genome with > 98% nucleotide identity with the chimpanzee genome over 2,700,000,000 DNA base pairs.

Reference	Sample Type	Sample Size	Percent Nucleotide Mismatches
Britten 2002	Random sample	0.78 Mb	1.2-1.69%
Ebersberger et al. 2002	Random sample	1.9 Mb	1.24%
Liu et al. 2003	Chromosome 7	4.97 Mb	1.13%
Wildman et al. 2003	Gene exons	90 kb	0.87%
International Chimpanzee Chromosome 22	Finished chromosomal	33.3 Mb	1.44%
Consortium 2004	sequence		
Nielsen et al. 2005	Gene exons	18.5 Mb	0.6%
Chimpanzee Sequencing and Analysis	Rough draft genome	2700 Mb	1.23%
Consortium 2005	sequence		

 Cable 1. Summary of Human/Chimpanzee Genome Similarity Estimates.

Occas. Papers of the BSG No. 7, pp. 1-18 www.bryancore.org/bsg/ ©2006 BSG. All rights reserved.

The Chimpanzee Genome and the Problem of Biological Similarity

TODD CHARLES WOOD¹

Note that this is only one tiny fragment in a genome with > 98% nucleotide identity with the chimpanzee genome over 2,700,000,000 DNA base pairs.

Reference	Sample Type	Sample Size	Percent Nucleotide Mismatches
Britten 2002	Random sample	0.78 Mb	1.2-1.69%
Ebersberger et al. 2002	Random sample	1.9 Mb	1.24%
Liu et al. 2003	Chromosome 7	4.97 Mb	1.13%
Wildman et al. 2003	Gene exons	90 kb	0.87%
International Chimpanzee Chromosome 22	Finished chromosomal	33.3 Mb	1.44%
Consortium 2004	sequence		
Nielsen et al. 2005	Gene exons	18.5 Mb	0.6%
Chimpanzee Sequencing and Analysis	Rough draft genome	2700 Mb	1.23%
Consortium 2005	sequence		

Table 1. Summary of Human/Chimpanzee Genome Similarity Estimates.

Occas. Papers of the BSG No. 7, pp. 1-18 www.bryancore.org/bsg/ ©2006 BSG. All rights reserved.

The Chimpanzee Genome and the Problem of Biological Similarity

TODD CHARLES WOOD¹

Note that this is only one tiny fragment in a genome with > 98% nucleotide identity with the chimpanzee genome over 2,700,000,000 DNA base pairs.

Reference	Sample Type		Sample Size	Percent Nucleotide Mismatches
Britten 2002	Random sample		0.78 Mb	1.2-1.69%
Ebersberger et al. 2002	Random sample		1.9 Mb	1.24%
Liu et al. 2003		Chromosome 7	4.97 Mb	1.13%
Wildman et al. 2003		Gene exons	90 kb	0.87%
International Chimpanzee Chromosome 22 Consortium 2004	Fini	shed chromosomal sequence	33.3 Mb	1.44%
Nielsen et al. 2005	1	Gene exons	18.5 Mb	0.6%
Chimpanzee Sequencing and Analysis Consortium 2005	Ro	ugh draft genome sequence	2700 Mb	1.23%

 Cable 1. Summary of Human/Chimpanzee Genome Similarity Estimates.

Samples taken from gene exons are even more identical s. Propers of the BSG No. 7, pp. 1-18 dyancore.org/bsg/

©2006 BSG. All rights reserved.

The Chimpanzee Genome and the Problem of Biological Similarity

TODD CHARLES WOOD¹

Chromosomal mutations (within species):

Inversions Translocations The evidence for a chromosomal rearrangement is <u>synteny</u>: the retention of numerous genes in the spatial arrangement

Bhutkar, A. et al. Genetics 2008;179:1657-1680

Chromosomal mutations (within species):

Chromosomal mutations (within species):

These events can also be traced between closely related species.

Drosophilid species as a model for chromosome change over time

Genetics. 2008 July; 179(3): 1657–1680. doi: 10.1534/genetics.107.086108. PMCID: PMC2475759

Copyright © 2008 by the Genetics Society of America

Chromosomal Rearrangement Inferred From Comparisons of 12 Drosophila Genomes

Arjun Bhutkar,^{*†1} Stephen W. Schaeffer,[‡] Susan M. Russo,^{*} Mu Xu,[‡] Temple F. Smith,[†] and William M. Gelbart^{*}

*Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, †Bioinformatics Program, Boston University, Boston, Massachusetts 02215 and ‡Department of Biology and Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University Park, Pennsylvania 16802-5301

¹Corresponding author: Gelbart Lab, Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Ave., Room 4059, Cambridge, MA 02138. E-mail: arjunb@morgan.harvard.edu

Genetics. 2008 July; 179(3): 1601–1655. doi: 10.1534/genetics.107.086074. PMCID: PMC2475758

Copyright © 2008 by the Genetics Society of America

Polytene Chromosomal Maps of 11 Drosophila Species: The Order of Genomic Scaffolds Inferred From Genetic and Physical Maps

Stephen W. Schaeffer,^{*1} Arjun Bhutkar,^{†‡} Bryant F. McAllister,[§] Muneo Matsuda,[¶] Luciano M. Matzkin,[&] Patrick M. O'Grady,^{**} Claudia Rohde,^{††} Vera L. S. Valente,^{‡‡} Montserrat Aguadé,^{§§} Wyatt W. Anderson,[¶] Kevin Edwards,^{**} Ana C. L. Garcia,^{‡‡} Josh Goodman, ^{&&} James Hartigan, ^{***} Fiko Kataoka,[¶] Richard T. Lapoint, ^{†††} Elena R

Drosophilid phylogeny and chromosomal synteny

Synteny relative in 8 Drosophilid species

Schaeffer, S. W. et al. Genetics 2008;179:1601-1655

Human : chimpanzee synteny

HSA2

Synteny Comparison between Apes and Human Using Fine-Mapping of the Genome

exandra de Pontbriand,¹ Xiao-Ping Wang,^{1,2} Yvon Cavaloc,¹ Marie-Geneviève Mattei,³ and Francis Galibert^{1,*}

GENOMICS Vol. 80, Number 4, October 2002 Copyright © 2002 Elsevier Science (USA). All rights reserve 0888-7543/02 \$35.00

Synteny Comparison between Apes and Human Using Fine-Mapping of the Genome

xandra de Pontbriand,¹ Xiao-Ping Wang,^{1,2} Yvon Cavaloc,¹ Marie-Geneviève Mattei,³ and Francis Galibert^{1,*}

GENOMICS Vol. 80, Number 4, October 2002 Copyright © 2002 Elsevier Science (USA). All rights reserve 0888-7543/02 \$35.00

Human : chimpanzee synteny

xandra de Pontbriand,¹ Xiao-Ping Wang,^{1,2} Yvon Cavaloc,¹ Marie-Geneviève Mattei,³ and Francis Galibert^{1,*} GENOMICS Vol. 80, Number 4, October 2002 Copyright © 2002 Elsevier Science (USA). All rights reserve 0888-7543/02 \$35.00 "Surely synteny reflects a higher-order genomic organization required for function?"

Unitary *pseudogenes* are sequences recognizable as once having been a functional gene, but now are inactivated due to mutation.

Human specific loss of olfactory receptor genes

Yoav Gilad*,†,‡, Orna Man‡, Svante Pääbo*, and Doron Lancet‡

+ Author Affiliations

Edited by Henry C. Harpending, University of Utah, Salt Lake City, UT, and approved January 3, 2003 (received for review September 20, 2002)

« Previous | Next Article » Table of Contents

This Article

⇒

Published online before print February 28, 2003, doi: 10.1073/pnas.0535697100

PNAS March 18, 2003 vol. 100 no. 6 3324-3327

Abstract Free Figures Only

» Full Text

The primate olfactory receptor subgenome reveals numerous pseudogenes shared between humans and great apes (with identical inactivating mutations), as well as human-specific pseudogenized loci.

These pseudogenes are retained in syntenic blocks between genomes.

« Previous | Next Article :

Table of Contents

Published online before print February 28, 2003, doi: 10.1073/pnas.0535697100

PNAS March 18, 2003 vol. 100 no. 6 3324-3327

This Article

Abstract Free

Figures Only

» Full Text

⇒

Human specific loss of olfactory receptor genes

Yoav Gilad*,†,‡, Orna Man‡, Svante Pääbo*, and Doron Lancet‡

+ Author Affiliations

Edited by Henry C. Harpending, University of Utah, Salt Lake City, UT, and approved January 3, 2003 (received for review September 20, 2002)

Table 1

OR genes analyzed

Locus	Human	Chimp	Gorilla	Orang	Rhesus
10A3		824-stop			
10A5					396-sto
10AA1p	302-del	302-de	302-del		
10J5					238-sto
10T1p	391-stop				
11H7p	691-stop				
11i1p	274-stop	274-stop	274-stop		ND
11K1p	176-stop	176-stop	176-stop		176-st
12D1p	557-del			235-ins	
1303				180-stop	
13C6p	235-del	744-del			
13D1				105-stop	
13E1p	182-del	182-del			
13H1				300-del	404-de
101					
1J2					317-st
1L3					ND
1 S 1			96-del		
2Ai1p	528-del	528-del		203-del	
2J3				530-ins	
2L8			444-stop	245-ins	
2Q1p	505-del			507-del	518-de
2T7p	77-del				
4A13p	174-stop		406-stop		
4A4				309-del	
4E1p					<i>.</i>
4F15			ND	328-del	
463p	178-del	178-del	178-del	178-del	178-del

Analysis of Nuclear Receptor Pseudogenes in Vertebrates: How the Silent Tell Their Stories

Zhengdong D. Zhang,* Philip Cayting,* George Weinstock,† and Mark Gerstein* \$

Mol. Biol. Evol. 25(1):131-143. 2008 doi:10.1093/molbev/msm251 Advance Access publication December 7, 2007

Analysis of Nuclear Receptor Pseudogenes in Vertebrates: How the Silent Tell Their Stories

Zhengdong D. Zhang,* Philip Cayting,* George Weinstock,† and Mark Gerstein*‡§

Mol. Biol. Evol. 25(1):131–143. 2008 doi:10.1093/molbev/msm251 Advance Access publication December 7, 2007

Farnesoid receptor Beta

HS atg gca aat act tat gtc act gca tgt gat agg tat tgt ctt gct gaa cca gt. cag tgc PT atg gca aat act tat gtc act gca tgt gat agg tat tgt ctt gct gaa cca gt. cag tgc CLF atg gca aat act tat gtc act aca tct gat ggg tac tgt ctt gct gaa cca gtg cag tac MM atg gca aat acc tat gtt gct acg tct gat ggg tac tac ctc gct gaa ccc aca cag tat

HS = Homo sapiens (human) PT = Pan troglodytes (chimpanzee) CLF = Canis lupus familiaris (dog) MM = Mus musculus (mouse)

RESEARCH ARTICLE

Loss of Egg Yolk Genes in Mammals and the Origin of Lactation and Placentation

Citation: Brawand D, Wahli W, Kaessmann H (2008) Loss of Egg Yolk Genes in Mammals and the Origin of Lactation and Placentation. PLoS Biol 6(3): e63. doi:10.1371/journal.pbio.0060063

Vitellogenin loci persist as pseudogenes in non-prototherian mammals:

Figure 1. VIT Gene Evolution in Tetrapods

The topology and divergence times of the tree are based on previous studies [19,24,25,41]. Latin crosses indicate VIT inactivation events in eutherians and monotremes. Inactivation estimates (including approximated 95% prediction intervals) based on opossum VIT sequences are indicated by colored bars at the top (see also Figure 3). Duplications ("x2") are indicated VITanc is the likely appeared of both the amphibian vtaA1/vtaA2 and VIT2VIT3 genes

The *vitellogenin (VIT1)* pseudogene in humans is found in a region syntenic with the chicken genome

Figure 2. Genome Alignment (Dot Plot Representing SIM Alignments) of Human/Chicken Syntenic Regions *VIT 1-VIT3* Regions The chain with the best cumulative score is shown. Alignment of flanking genes confirms the synteny of the aligned regions. The combined alignments of *VIT1* coding sequences showed significantly higher alignment scores than the genomic background (introns and intergenic regions) in the chain, as assessed by a Mann-Whitney *U* test (p < 0.05). Thus, we can statistically exclude that detected *VIT1* remnants from humans represent spurious sequence matches. The coding sequence matches for *VIT2/3* may be too short to provide statistical significance or partially spurious. doi:10.1371/journal.pbio.0060063.g002 "Perhaps pseudogenes have an as yet undiscovered function?"

"The identical inactivation mutations could indicate multiple independent inactivations in a non-random manner."

Common descent Non-evolutionary Designer

Homology

Redundancy

Synteny

Pseudogeny

Common descent

Homology

As predicted

Non-evolutionary Designer

Redundancy

Synteny

Pseudogeny

Common descent

Homology As predicted

Redundancy As predicted

Synteny

Pseudogeny

Non-evolutionary Designer

Common descent

Homology

As predicted

Redundancy As predicted

Synteny

Observed synteny consistent with recent divergence

Pseudogeny

Non-evolutionary Designer

Common descent

Homology

As predicted

Redundancy As predicted

Synteny

Observed synteny consistent with recent divergence

Pseudogeny As predicted

Non-evolutionary Designer

Common descent

Homology

As predicted

Non-evolutionary Designer

Designer constrained by function, appearance of common descent required

Redundancy As predicted

Synteny

Observed synteny consistent with recent divergence

Pseudogeny As predicted

	Common descent	Non-evolutionary Designer
Homology	As predicted	Designer constrained by function, <i>appearance</i> of common descent required
Redundancy	As predicted	Designer constrained by function, <i>appearance</i> of common descent required
Synteny	Observed syntem consistent with recent divergence	e
Pseudogeny	As predicted	

	Common descent	Non-evolutionary Designer Designer constrained by function, <i>appearance</i> of common descent required			
Homology	As predicted				
Redundancy	As predicted	Designer constrained by function, <i>appearance</i> of common descent required			
Synteny	Observed synten consistent with recent divergence	y Designer constrained function, <i>appearance</i> of common descent require			
Pseudogeny	As predicted				

	Common descent	Non-evolutionary Designer			
Iomology	As predicted	Designer constrained by function, <i>appearance</i> of common descent required			
Redundancy	As predicted Designer constrained by function, <i>appearance</i> common descent required				
Synteny	Observed synten consistent with recent divergence	y Designer constrained function, <i>appearance</i> of common descent required			
Pseudogeny	As predicted	Designer constrained by function, <i>appearance</i> of			

common descent required

Evidence for ancestral hominid population size

Gustave Dore: *The Deluge* (Dore Illustrated Bible, 1865) Species trees vs. gene trees

Trans-specific polymorphisms

Polymorphism / heterozygosity based estimates

Linkage disequillibrium estimates Evidence for ancestral hominid population size

Gustave Dore: *The Deluge* (Dore Illustrated Bible, 1865) Species trees vs. gene trees

Trans-specific polymorphisms

Polymorphism / heterozygosity based estimates

Linkage disequillibrium estimates

Figure 3. Inferred Genealogies from Real Data

(From bottom to top) Analysis of the first 100 kb from Target 1.

(Bottom) Site information without outgroup: sites shared by HC in red, by HG in blue, and by CG in green (compare first, third, and last columns in Table 1). (Second from bottom) Site information with outgroup: sites strongly supporting states HC1 or HC2 in red, HG in blue, and CG in green (compare second, third, and last columns in Table 1).

(Third from bottom) Posterior probabilities: Coloring as in second from bottom, except that state HC2 is dark red.

(Top) Fine-scale recombination rate estimates (log scale). The vertical lines mark subdivisions of the multiple alignment due to more than 50-base-pair deletions in one species (see "Data" in Materials and Methods).

doi:10.1371/journal.pgen.0030007.g003

Evidence for ancestral hominid population size

Gustave Dore: *The Deluge* (Dore Illustrated Bible, 1865) Species trees vs. gene trees

Trans-specific polymorphisms

Polymorphism / heterozygosity based estimates

Linkage disequillibrium estimates

Recent human effective population size estimated from linkage disequilibrium

520 Genome Research www.genome.org

17:520-526

Albert Tenesa,^{1,2,3} Pau Navarro,³ Ben J. Hayes,⁴ David L. Duffy,⁵ Geraldine M. Clarke,⁶ Mike E. Goddard,^{4,7} and Peter M. Visscher^{3,5,8}

Table 1. N_e estimates from the nonlinear model (Method 1)

Chromosome	Population							
	CEU		YRI		JPT		НСВ	
	n	Ne	n	N _e	n	Ne	n	Ne
1	1,350,336	2824	1,602,447	6197	1,155,365	2549	1,170,837	2694
2	1,770,347	3197	1,958,708	6675	1,382,444	3200	1,404,237	3294
3	1,318,345	3085	1,300,983	6897	936,628	2534	949,450	2743
4	1,052,614	3232	1,086,591	6351	772,233	3226	790,459	3312
5	1,074,385	3116	974,226	6932	795,412	2554	803,800	2762
6	1,323,089	3031	1,359,998	6745	1,101,243	2678	1,114,544	2854
7	946,353	2196	816,514	6745	600,416	2739	613,743	2897
8	2,292,984	3029	2,531,320	7004	2,036,130	2650	2,061,705	2802
9	1,779,571	3048	1,928,452	7019	1,564,337	2678	1,572,613	2830
10	919,144	3227	1,044,438	6868	770,465	3036	782,584	2860
11	789,664	3027	771,232	6181	613,884	2520	614,225	2669
12	987,085	3157	993,895	7007	733,950	2812	740,215	2919
13	660,098	2031	795,844	4806	547,950	1928	554,326	2041
14	521,596	2232	495,815	4719	390,544	1983	397,645	2134
15	436,105	1933	465,532	4143	346,811	1830	354,237	1878
16	417,032	3017	419,655	7334	324,468	2825	324,315	2935
17	411,015	2935	387,225	6384	307,220	2843	312,735	2752
18	1,223,437	2409	1,459,903	5771	1,008,782	2315	1,029,745	2365
19	270,281	3126	259,975	7416	208,095	2656	218,568	2608
20	393,509	3338	355,554	6864	270,347	2534	275,690	2795
21	656,672	1485	748,128	3855	663,630	1440	672,430	1574
22	619,770	1459	669,718	3246	587,244	1217	584,544	1081
Х	924,274	3613	1,117,100	9421	738,824	3141	788,186	3458
Mean SD	962,509 513,402	2772 598	1,023,620 581,811	6286 1357	776,366 447,337	2517 524	788,297 452,066	2620 557

(n) Number of marker pairs; (N_e) effective population size. Intermarker distance was in the range of 5 kb to100 kb for all SNP pairs.

Common descent Non-evolutionary Designer

Population genetics

Common descent Non-evolutionary Designer

Population genetics Complex speciation, large ancestral population

Common descent Non-evolutionary Designer

Population genetics Complex speciation, large ancestral population Designer constrained by function, *appearance* of common descent required

Titian: The Fall of Man (c. 1570)

Titian: The Fall of Man (c. 1570)

"Ratcheting concordism"

Titian: The Fall of Man (c. 1570)

"Ratcheting concordism"

US.

ANE phenomenological perspective

Titian: The Fall of Man (c. 1570)

"Ratcheting concordism"

US.

ANE phenomenological perspective

Higher view of Scripture?

Titian: The Fall of Man (c. 1570)

Questions?