TABLE OF CONTENTS
for
A Model of Integrated Scientific Method and
its Application for the Analysis of Instruction

a dissertation
submitted by Craig Rusbult
on March 14, 1997, for a
Ph.D. in Curriculum & Instruction
at the University of Wisconsin-Madison

(below, links take you to topics within the full-text files)

[ also - a partial Table of Contents, color-coded for Integrative Analysis ]
 


  
CHAPTER 1:  An Overview

        Introduction

        Objective 1

        Objective 2

        Significance of the Research
 


 
CHAPTER 2:  A Model of
"Integrated Scientific Method"

        2.00:  Goals for a Model of ISM
 

The ISM Framework

        2.01:  Empirical Factors in Theory Evaluation

        2.02:  Conceptual Factors in Theory Evaluation

        2.03:  Cultural-Personal Factors in Theory Evaluation

        2.04:  Theory Evaluation

        2.05:  Theory Invention

        2.06:  Experimental Design

        2.07:  Problem Solving, Thought Styles, and Thinking
                  A.  Problem-Solving Projects
                  B.  Thought Styles
                  C.  Mental Operations

 

AN EVALUATION OF ISM AS A DESCRIPTIVE FRAMEWORK

        2.08:  Can ISM Describe a Wide Range of Views and Practices?
                  A.  One Framework, Many Elaborations
                  B.  Can ISM describe a wide range of views?
                  C.  External Consistency and Retroductive Inference?
                  D.  Cultural-Personal Influence?
                  E.  Hypothetico-Deductive Reasoning?
                  F.  Analysis and Holism
                  G.  Can ISM describe a wide range of science?
                  H.  Is ISM biased?
                  I.  Can ISM cope with differences in terminology?

        2.09:  Is ISM a model for 'scientific method'?  (Part 1)
                  A.  A Penchant for Patterns?
                  B.  Skeptics about Methods
                  C.  Does ISM try to describe a 'method' in science?
                  D.  Is ISM a Model?

 

AN ISM ELABORATION

2.1:  Empirical Factors in Theory Evaluation

        2.11:  System and Model, Predictions and Observations
                  A.  Theories
                  B.  Experimental System
                  C.  Theory-Based Model of Experimental System
                  D.  Model-Based Predictions
                  E.  Experimental Observations

        2.12:  Hypothetico-Deductive Logic
                  A.  Degree of Agreement
                  B.  Degree of Predictive Contrast
                  C.  Two Evaluation Criteria, and Multiple Sources of Data

2.2:  Conceptual Factors in Theory Evaluation

        2.21:  Simplicity and Internal Consistency
                  A.  Simplification
                  B.  Systematicity
                  C.  Simplicity
                  D.  Internal Consistency

        2.22:  Conflicting Criteria
                  A.  Simplification versus Completeness and Empirical Adequacy
                  B.  Ad Hocness versus Inventive Revision

        2.23:  Constraints on Theory-Components

        2.24:  Description and Explanation
                  A.  Is there an explanation for gravity?
                  B.  Empiricism
                  C.  Theories (descriptive and explanatory) in ISM

        2.25:  Cognitive Utility
                  A.  Theory Structure and Cognitive Structure
                  B.  Personal Thinking Styles and Communal Thought Styles

        2.26:  Research Utility
                  A.  Acceptance and Pursuit
                  B.  Evaluation Criteria for Immature Theories
                  C.  Ideas for Experimental Design
                  D.  How a 'False Model' can be Useful
                  E.  Useful Functions of Simplification

        2.27:  External Consistency
                  A.  Overlapping Domains and Shared Components
                  B.  A Shared Domain, with Competitive Theories
                  C.  A Shared Component (with inconsistency) in Different Domains
                  D.  A Shared Component (with consistency) in Different Domains
                  E.  Component or Conclusion?
                  F.  Conceptual or Empirical?

        2.28:  External Connections
                  A.  Levels of Organization
                  B.  Theories with Wide Scope
                  C.  External Relationships viewed as Internal Relationships
                  D.  Is a 'grand unified theory' a worthwhile goal?
                  E.  Progressing from Description to Explanation
                  F.  Unification as Consilience with Simplicity
                  G.  A Narrowing of Domains

2.3:  Cultural-Personal Factors

        2.31:  Five Types of Influences
                  A.  Psychological Motives and Practical Concerns
                  B.  Metaphysical Worldviews and Ideological Principles
                  C.  Opinions of Authorities

        2.32:  The Social-Institutional Context of Cultural-Personal Factors

        2.33:  Mutual Interactions between Science and Culture

        2.34:  Personal Consistency

2.4:  Theory Evaluation

        2.41:  Intrinsic Status and Relative Status

        2.42:  Responses to Theory Evaluation

        2.43:  Truth Status and Utility Status

        2.44:  The Limits of Logic, and Rationally Justified Confidence
                  A.  Limitations of Hypothetico-Deductive Logic
                  B.  Limitations of Observations
                  C.  Limitations on Inductive Logic
                  D.  Potential Problems and Actual Problems

        2.45:  Conflicts and Controversies
                  A.  Empirical Factors and Conceptual Factors
                  B.  Relativism
                  C.  Realism and Instrumentalism

2.5:  Theory Selection and Invention

        2.51:  Selection and Invention

        2.52:  Retroductive Logic and Empirically Inspired Invention
                  A.  Timing
                  B.  Purpose
                  C.  Logical Limitations
                  D.  Invention of a Domain-Theory or System-Theory
                  E.  Multiple Empirical Constraints and Retroductive Induction

        2.53:  Conceptually Inspired Invention
                  A.  Analysis-and-Revision
                  B.  Internal Consistency
                  C.  External Relationships

2.6:  Experimental Design

        2.61:  Goal-Directed Experimental Design
                  A.  Knowledge about Theories and Experimental Systems
                  B.  Gathering Data in Early Stages of Development
                  C.  Strategies and Principles for Experimental Design
                  D.  Knowledge of Experimental Techniques
                  E.  Anomaly Resolution
                  F.  Predictive Contrast and Crucial Experiments
                  G.  Heuristic Experiments and Demonstration Experiments
                  H.  Experiments in Problem-Solving Projects

        2.62:  Taking Advantage of Opportunities

        2.63:  Thought Experiments
                  A.  Thought Experiments and Physical Experiments
                  B.  Four Types of Thought-Experiments

2.7:  Problem Solving, Thought Styles, and Thinking

        2.71:  Problem Solving in Science
                  A.  Problems
                  B.  Problem-Solving Actions
                  C.  Problem-Solving Projects
                  D.  Action Evaluation
                  E.  Private Evaluation and Public Evaluation
                  F.  Preparation
                  G.  Levels of Problem Solving
                  H.  A 3Ps Model of Science
                   I.  A Basic Theme with Variations
                   J.  Interactions between Stages and Activities
                  K.  Interactions between Levels of Problem Solving

        2.72:  Thought Styles
                  A:  Definitions
                  B.  Effects on Experiments and Theories, Goals and Procedural Styles
                  C.  Two Metaphors: a Puzzle and a Filter
                  D.  Problem Posing
                  E.  Conflicts in Problem Posing
                  F.  Preparation, Probing, and Persuasion
                  G:  Variety
                  H:  Conformity
                   I:  Change

        2.73:  Motivation and Memory, Creativity and Critical Thinking
                  A.  Motivation
                  B.  Memory
                  C.  Creativity and Critical Thinking

 

AN EVALUATION OF ISM AS A DESCRIPTIVE FRAMEWORK

2.8:  Other Views of Scientific Method

        2.81:  Alternative Elaborations and Borrowed Ideas

2.9:  Is ISM a model for 'scientific method'?  (Part 2)

        2.91:  Description, Prediction, Explanation, Prescription
                  A.  Description
                  B.  Prediction
                  C.  Explanation
                  D.  Prescription

        2.92:  Is ISM a model for a method?

 
 


 
 

CHAPTER 3:  An Integrative Analysis of a Problem-Solving Classroom

        3.11:  Selection of a Course for Analysis

        3.12:  A Classroom Context for Problem Solving
                  A.  Effect-to-Cause Problems
                  B.  The Classroom

3.2:  Methods for the Analysis

        3.21:  Activities and Experiences in a Functional Analysis

        3.22:  An Overview of the Analysis

        3.23:  Major Instructional Activities

        3.24:  Creating a Classroom Atmosphere
                  A.  Students as Scientists
                  B.  Stories about Science
                  C.  Metacognitive Reflection
                  D.  Social-Intellectual Interactions

        3.25:  Genetics Problems in the Classroom
                  A.  Genetics Construction Kit (GCK)
                  B.  A Structured Representation of Mendel's Model
                  C.  GCK Problems that require Model Revising

        3.26:  Science Experiences

        3.27:  Three Stages of Analysis

        3.28:  Sources of Information for the Analysis
                  A.  Methods for the Central Activity
                  B. Methods for Other Activities

3.3:  The First Phase of Analysis - Student Experiences in Each Activity

        3.31:  Activity Group #1 - Black Box Model Revising
                  A:  Developing (building and revising) Models
                  B:  A Student Conference
                  C:  Revising Models

        3.32:  Activity-Group #2 - Genetics Phenomena
                  A:  The Cookie Analogy
                  B:  Human Variations and Human Pedigrees

        3.33:  Activity Group #3 - Initial Models
                  A:  Developing a Mendelian Model
                  B:  Developing a Model of Meiosis
                  C:  GCK Problems without Model Revising

        3.34:  Activity Group #4 - Genetics Model Revising
                  A:  GCK Problems that require Model Revising
                  B:  Student Conferences

        3.35:  Activity Group #5 - Manuscript Preparation
                  A:  Manuscript Writing and Manuscript Revising

3.4:  The Second Phase of Analysis -- The Structure of Instruction

        3.41:  An Introduction to the Second Phase of Analysis

        3.42.  Preparation by Learning Procedures

        3.43:  Preparation by Learning Concepts
                  A.  Providing Conceptual Knowledge for Model Revising
                  B.  Simplifying the Process of Analysis-and-Revision
                  C.  Limiting What Students Know About Genetics

        3.44:  Posing Problems
                  A.  Posing is done by the Teacher
                  B.  Posing is done by Students
                  C.  Do Students Pose Problems?

        3.45:  Adjusting the Level of Difficulty
                  A.  Why Adjustments are Important
                  B.  When to adjust?  Before or During Problem Solving
                  C.  The Teacher as a Source of Procedural Knowledge
                  D.  The Teacher as a Source of Conceptual Knowledge
                  E.  The Teacher as an Adjuster of Problem Difficulty
                  F.  The Teacher as a Source of Emotional Support

        3.46:  Helping Students Learn from Their Experience
                  A.  The Teacher as a Facilitator of Learning
                  B.  Learning by Metacognitive Reflection
                  C.  Learning from Other Students

        3.47:  Stories about Science and Scientists
                  A.  Stories about Science: Strategies for Problem Solving
                  B.  Stories about Science: Having Fun as a Scientist

        3.48:  Functional Relationships in the Instruction
                  A.  Functional Relationships Within Activities
                  B.  Functional Relationships Between Activities

3.5:  Suggestions for Improving the Course

        3.51:  Suggestions by Others

        3.52:  My Suggestions for Improvement
                  A.  Supplementing Incomplete or Inauthentic Science Experiences
                  B.  Using ISM in Discussions of Problem-Solving Strategies
                  C.  Using Prediction Overviews

3.6:  Evaluating the ISM-Based Analysis

        3.61:  Understanding the Structure of Instruction

        3.62:  Testing and Improving the Analytical Utility of ISM
                  A.  Testing ISM as a Tool for Instructional Analysis?
                  B.  An Improved Understanding of ISM-Based Analysis?
                  C.  An Improvement in ISM as a Tool for Analysis?
                  D.  Using ISM as part of an Eclectic Analytical Framework?

     


 

CHAPTER 4:
Potential Educational Applications
for a Model of
"Integrated Scientific Method"

4.1:  Using ISM for Instructional Design

        4.11:  Aesop's Activities

        4.12:  Analysis and Design

4.2:  Using ISM in the Classroom

        4.21:  Learning from Experience

        4.22:  Coping with Complexity

        4.23:  Should Scientific Method be EKS-Rated?  (EKS = X)

4.3:  Using ISM for Teacher Education

4.4:  General Thinking Skills and a "Wide Spiral" Curriculum

        4.41:  A Model for an "Integrated Design Method"

        4.42:  A Wide Spiral Curriculum

        4.43:  In Praise of Variety in Education

4.5:  An Overview of "ISM in Education"

     


 

References  (are available in another page)

 


 

APPENDIX

A1:  A Brief History of ISM-Diagrams

     

A2:  Controversies about Scientific Method

        A21:  Logical Skepticism
                  A:  Hypothetico-Deductive Logic
                  B:  Theory-Influenced Observations
                  C.  Extreme Solutions for Pseudo-Problems

        A22:  Empiricism

        A23:  Realism and Instrumentalism
                  A:  The Flexibility of Critical Realism
                  B:  Pros and Cons of Instrumentalism
                  C:  Is there Scientific Progress?
                  D:  Do Scientists Create Reality?

        A24:  Relativism
                  A.  Motives for Relativism
                  B.  Criticisms of Radical Relativism

        A25:  Tools for Analysis: Idealization and Range Diagrams
                  A.  Analysis by Idealization
                  B.  Analysis using Range Diagrams

     

B1:  Prediction Overviews, and Potential Problem-Solving Actions

        B10:  A New Type of Representation: Prediction Overviews
                  A.  A System of Symbols
                  B.  A Prediction Overview for a Model of Dominance
                  C.  Utility - Scientific, Instructional, and Analytical

        B11:  A Model for Round 1 -- Codominance
                  A.  Anomaly Recognition
                  B.  A General Problem-Solving Strategy
                  C.  Anomaly Resolution
                  D.  Model Revising

        B12:  A Model for Round 2 -- Multiple Alleles
                  A.  Anomaly Recognition
                  B.  Anomaly Resolution
                  C.  Model Revising
                  D.  Other Sub-Patterns for the Pattern of Multiple Alleles

        B13:  A Model for Round 3 -- X-linkage
                  A.  Anomaly Recognition
                  B.  Anomaly Resolution
                  C.  Model Revising

        B14:  A Model for Round 4 -- Autosomal linkage

        B15:  A Prediction Overview for "3 Alleles per Individual"

        B16:  A Comparison of Three Symbol-Systems

     

B2:  Actual Problem-Solving Actions

        B20:  Four Sources of Empirical Data for the Analysis

        B21:  An Overview of the Analysis

        B22:  An ISM-based Analysis of Problem-Solving Actions
                  A.  An Overview of the Problem-Solving Process
                  B.  Anomaly Recognition
                  C.  Serendipity, Surprise, Alertness, Statistics
                  D.  Connecting Anomaly Recognition with Anomaly Resolution
                  E.  Anomaly Resolution by a process of Invention-and-Evaluation
                  F.  Memory for Models
                  G.  Conceptual Constraints on Thinking
                  H.  Three Alleles Per Individual?
                   I.  Protected Components
                  J.  Conceptual Information from the Teacher
                  K.  An Example of Conceptual Assistance
                  L.  Combining Ideas in New Combinations
                  M.  Key Factors in Successful Model Revising
                  N.  Using Time: Observation and Interpretation
                  O.  Theory Evaluation: Balancing Empirical and Conceptual Factors
                  P.  Denial of Anomaly
                  Q.  Evaluation based on Thought Styles and Complexity
                  R.  Combining Perseverance and Flexibility
                  S.  Observables and Unobservables, Logic and Patience
                  T.  Retroductive Inference of Models and System-Theories
                  U.  Descriptive Theories and Explanatory Theories
                  V.  Testing Models: Experimenting and Evaluating
                  W.  Goal-Oriented Experimental Design
                  X.  Trial-and-Error with Fluent Speed
                  Y.  A Story of Goal -Oriented Wandering
                  Z.  Competition and Cooperation

 



 
This page, assembled by Craig Rusbult, is
http://www.asa3.org/ASA/education/think/toc.htm